getting close, something wrong with copying the buffer. Probably the format that I've selected
This commit is contained in:
@@ -36,34 +36,42 @@ void main() {
|
||||
uint idx = get_idx(0,0);
|
||||
|
||||
ivec4 p = separate(read_buffer.buf[get_idx(0 , 0)]);
|
||||
ivec4 p0 = separate(read_buffer.buf[get_idx(0 , 1)]);
|
||||
ivec4 p1 = separate(read_buffer.buf[get_idx(0 ,-1)]);
|
||||
ivec4 p2 = separate(read_buffer.buf[get_idx(1 , 1)]);
|
||||
ivec4 p3 = separate(read_buffer.buf[get_idx(-1,-1)]);
|
||||
ivec4 p4 = separate(read_buffer.buf[get_idx(1 , 0)]);
|
||||
ivec4 p5 = separate(read_buffer.buf[get_idx(-1, 0)]);
|
||||
ivec4 p6 = separate(read_buffer.buf[get_idx(1 ,-1)]);
|
||||
ivec4 p7 = separate(read_buffer.buf[get_idx(-1, 1)]);
|
||||
// ivec4 p0 = separate(read_buffer.buf[get_idx(0 , 1)]);
|
||||
// ivec4 p1 = separate(read_buffer.buf[get_idx(0 ,-1)]);
|
||||
// ivec4 p2 = separate(read_buffer.buf[get_idx(1 , 1)]);
|
||||
// ivec4 p3 = separate(read_buffer.buf[get_idx(-1,-1)]);
|
||||
// ivec4 p4 = separate(read_buffer.buf[get_idx(1 , 0)]);
|
||||
// ivec4 p5 = separate(read_buffer.buf[get_idx(-1, 0)]);
|
||||
// ivec4 p6 = separate(read_buffer.buf[get_idx(1 ,-1)]);
|
||||
// ivec4 p7 = separate(read_buffer.buf[get_idx(-1, 1)]);
|
||||
|
||||
ivec3 d0 = abs(p0.xyz - p1.xyz);
|
||||
ivec3 d1 = abs(p2.xyz - p3.xyz);
|
||||
ivec3 d2 = abs(p4.xyz - p5.xyz);
|
||||
ivec3 d3 = abs(p6.xyz - p7.xyz);
|
||||
// ivec3 d0 = abs(p0.xyz - p1.xyz);
|
||||
// ivec3 d1 = abs(p2.xyz - p3.xyz);
|
||||
// ivec3 d2 = abs(p4.xyz - p5.xyz);
|
||||
// ivec3 d3 = abs(p6.xyz - p7.xyz);
|
||||
|
||||
ivec3 m = max(max(max(d0, d1), d2), d3);
|
||||
// ivec3 m = max(max(max(d0, d1), d2), d3);
|
||||
|
||||
if ((m.x + m.y + m.z) > 275){
|
||||
p.x = 0;
|
||||
p.y = 0;
|
||||
p.z = 255;
|
||||
}
|
||||
// if ((m.x + m.y + m.z) > 275){
|
||||
// p.x = 0;
|
||||
// p.y = 0;
|
||||
// p.z = 255;
|
||||
// }
|
||||
|
||||
//p.z = max(p.z - (d0.x + d0.y + d0.z + d1.x + d1.y + d1.z)/5, 0);
|
||||
// //p.z = max(p.z - (d0.x + d0.y + d0.z + d1.x + d1.y + d1.z)/5, 0);
|
||||
|
||||
// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
|
||||
// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);
|
||||
// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16);
|
||||
// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24);
|
||||
|
||||
// p.x = 70;
|
||||
|
||||
// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
|
||||
// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);
|
||||
// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16);
|
||||
// write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24);
|
||||
|
||||
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
|
||||
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);
|
||||
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16);
|
||||
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24);
|
||||
|
||||
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
|
||||
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);
|
||||
|
||||
@@ -4,5 +4,16 @@ layout(location = 0) out vec4 f_color;
|
||||
layout(set = 0, binding = 0) uniform sampler2D tex;
|
||||
layout(set = 0, binding = 1, rgba8ui) readonly uniform uimage2D img;
|
||||
void main() {
|
||||
f_color = texture(tex, tex_coords);
|
||||
|
||||
vec2 onePixel = vec2(1.0, 1.0) / (720.0, 756.0);
|
||||
vec2 pos = tex_coords + onePixel * vec2(0, 0);
|
||||
ivec2 ipos = ivec2(pos);
|
||||
vec4 colorSum = imageLoad(img, ipos);
|
||||
f_color = colorSum;
|
||||
|
||||
|
||||
// f_color = texture(tex, tex_coords);
|
||||
// ivec2 t = ivec2(tex_coords.x, tex_coords.y );
|
||||
|
||||
|
||||
}
|
||||
@@ -262,9 +262,16 @@ impl<'a> VkProcessor<'a> {
|
||||
options.add_macro_definition("SETTING_BUCKETS_START", Some("2"));
|
||||
options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2"));
|
||||
|
||||
let shader =
|
||||
sr::load(vertex_shader_path, fragment_shader_path)
|
||||
.expect("Failed to compile");
|
||||
let shader = sr::load(vertex_shader_path, fragment_shader_path).expect("");
|
||||
// let shader = match sr::load(vertex_shader_path, fragment_shader_path) {
|
||||
// Ok(t) => t,
|
||||
// Err(e) => {
|
||||
//
|
||||
// panic!(e);
|
||||
// }
|
||||
// };
|
||||
|
||||
|
||||
|
||||
let vulkano_entry =
|
||||
sr::parse(&shader)
|
||||
@@ -327,42 +334,6 @@ impl<'a> VkProcessor<'a> {
|
||||
|
||||
self.render_pass = Some(render_pass);
|
||||
|
||||
let (texture, tex_future) = {
|
||||
let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"),
|
||||
ImageFormat::JPEG).unwrap().to_rgba();
|
||||
let dimensions = image.dimensions();
|
||||
let image_data = image.into_raw().clone();
|
||||
|
||||
ImmutableImage::from_iter(
|
||||
image_data.iter().cloned(),
|
||||
Dimensions::Dim2d { width: dimensions.0, height: dimensions.1 },
|
||||
Format::R8G8B8A8Srgb,
|
||||
self.queue.clone()
|
||||
).unwrap()
|
||||
};
|
||||
|
||||
let attachment_image = {
|
||||
let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"),
|
||||
ImageFormat::JPEG).unwrap().to_rgba();
|
||||
let dimensions = image.dimensions();
|
||||
let image_data = image.into_raw().clone();
|
||||
|
||||
let mut usage = ImageUsage::none();
|
||||
usage.transfer_destination = true;
|
||||
usage.storage = true;
|
||||
|
||||
AttachmentImage::with_usage(
|
||||
self.device.clone(),
|
||||
[dimensions.0, dimensions.1],
|
||||
Format::R8G8B8A8Uint,
|
||||
usage)
|
||||
};
|
||||
|
||||
let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear,
|
||||
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
|
||||
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
|
||||
|
||||
|
||||
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
|
||||
// program, but much more specific.
|
||||
let pipeline = GraphicsPipeline::start()
|
||||
@@ -396,16 +367,8 @@ impl<'a> VkProcessor<'a> {
|
||||
.build(self.device.clone())
|
||||
.unwrap();
|
||||
|
||||
|
||||
self.graphics_pipeline = Some(Arc::new(pipeline));
|
||||
|
||||
self.img_set = Some(Arc::new(PersistentDescriptorSet::start(self.graphics_pipeline.clone().unwrap().clone(), 0)
|
||||
.add_sampled_image(texture.clone(), sampler.clone()).unwrap()
|
||||
.add_image(attachment_image.clone().unwrap().clone()).unwrap()
|
||||
.build().unwrap()));
|
||||
|
||||
self.graphics_image_buffer = Some(texture.clone());
|
||||
self.graphics_iamge_swap_buffer = Some(attachment_image.clone().unwrap());
|
||||
}
|
||||
|
||||
|
||||
@@ -430,102 +393,6 @@ impl<'a> VkProcessor<'a> {
|
||||
self.images = Some(new_images);
|
||||
}
|
||||
|
||||
|
||||
pub fn run(&mut self, surface: &'a Arc<Surface<Window>>, mut frame_future: Box<dyn GpuFuture>) -> Box<dyn GpuFuture> {
|
||||
|
||||
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
|
||||
self.render_pass.clone().unwrap().clone(),
|
||||
&mut self.dynamic_state);
|
||||
|
||||
let mut recreate_swapchain = false;
|
||||
|
||||
// The docs said to call this on each loop.
|
||||
frame_future.cleanup_finished();
|
||||
|
||||
// Whenever the window resizes we need to recreate everything dependent on the window size.
|
||||
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
|
||||
if recreate_swapchain {
|
||||
self.recreate_swapchain(surface);
|
||||
framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
|
||||
self.render_pass.clone().unwrap().clone(),
|
||||
&mut self.dynamic_state);
|
||||
recreate_swapchain = false;
|
||||
}
|
||||
|
||||
|
||||
// This function can block if no image is available. The parameter is an optional timeout
|
||||
// after which the function call will return an error.
|
||||
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) {
|
||||
Ok(r) => r,
|
||||
Err(AcquireError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
//continue;
|
||||
panic!("Weird thing");
|
||||
}
|
||||
Err(err) => panic!("{:?}", err)
|
||||
};
|
||||
|
||||
// Specify the color to clear the framebuffer with i.e. blue
|
||||
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
|
||||
|
||||
|
||||
{
|
||||
// In order to draw, we have to build a *command buffer*. The command buffer object holds
|
||||
// the list of commands that are going to be executed.
|
||||
//
|
||||
// Building a command buffer is an expensive operation (usually a few hundred
|
||||
// microseconds), but it is known to be a hot path in the driver and is expected to be
|
||||
// optimized.
|
||||
//
|
||||
// Note that we have to pass a queue family when we create the command buffer. The command
|
||||
// buffer will only be executable on that given queue family.
|
||||
let mut v = Vec::new();
|
||||
v.push(self.vertex_buffer.clone().unwrap().clone());
|
||||
|
||||
let command_buffer =
|
||||
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family())
|
||||
.unwrap()
|
||||
|
||||
.dispatch([self.xy.0, self.xy.1, 1],
|
||||
self.compute_pipeline.clone().unwrap().clone(),
|
||||
self.compute_set.clone().unwrap().clone(), ()).unwrap()
|
||||
|
||||
//.copy_buffer_to_image(self.img_buffers.get(0).unwrap().clone(), self.graphics_image_buffer.clone().unwrap()).unwrap()
|
||||
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
|
||||
.unwrap()
|
||||
|
||||
.draw(self.graphics_pipeline.clone().unwrap().clone(),
|
||||
&self.dynamic_state, v,
|
||||
self.img_set.clone().unwrap().clone(), ())
|
||||
.unwrap()
|
||||
|
||||
.end_render_pass()
|
||||
.unwrap()
|
||||
|
||||
.build().unwrap();
|
||||
|
||||
// Wait on the previous frame, then execute the command buffer and present the image
|
||||
let future = frame_future.join(acquire_future)
|
||||
.then_execute(self.queue.clone(), command_buffer).unwrap()
|
||||
.then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num)
|
||||
.then_signal_fence_and_flush();
|
||||
|
||||
match future {
|
||||
Ok(future) => {
|
||||
(Box::new(future) as Box<_>)
|
||||
}
|
||||
Err(FlushError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
(Box::new(sync::now(self.device.clone())) as Box<_>)
|
||||
}
|
||||
Err(e) => {
|
||||
println!("{:?}", e);
|
||||
(Box::new(sync::now(self.device.clone())) as Box<_>)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn load_buffers(&mut self, image_filename: String)
|
||||
{
|
||||
let project_root =
|
||||
@@ -618,6 +485,163 @@ impl<'a> VkProcessor<'a> {
|
||||
};
|
||||
|
||||
self.vertex_buffer = Some(vertex_buffer);
|
||||
|
||||
let (texture, tex_future) = {
|
||||
let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"),
|
||||
ImageFormat::JPEG).unwrap().to_rgba();
|
||||
|
||||
println!("{}", image.len());
|
||||
println!("{}", self.image_buffer.len());
|
||||
|
||||
let dimensions = image.dimensions();
|
||||
let image_data = image.into_raw().clone();
|
||||
|
||||
ImmutableImage::from_iter(
|
||||
image_data.iter().cloned(),
|
||||
Dimensions::Dim2d { width: dimensions.0, height: dimensions.1 },
|
||||
Format::R8G8B8A8Srgb,
|
||||
self.queue.clone()
|
||||
// self.image_buffer.iter().cloned(),
|
||||
// Format::R8G8B8A8Uint,
|
||||
|
||||
).unwrap()
|
||||
};
|
||||
|
||||
let attachment_image = {
|
||||
let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"),
|
||||
ImageFormat::JPEG).unwrap().to_rgba();
|
||||
let dimensions = image.dimensions();
|
||||
let image_data = image.into_raw().clone();
|
||||
|
||||
let mut usage = ImageUsage::none();
|
||||
usage.transfer_destination = true;
|
||||
usage.storage = true;
|
||||
|
||||
AttachmentImage::with_usage(
|
||||
self.device.clone(),
|
||||
[dimensions.0, dimensions.1],
|
||||
Format::R8G8B8A8Uint,
|
||||
usage)
|
||||
};
|
||||
|
||||
let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear,
|
||||
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
|
||||
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
|
||||
|
||||
|
||||
self.img_set = Some(Arc::new(PersistentDescriptorSet::start(self.graphics_pipeline.clone().unwrap().clone(), 0)
|
||||
.add_sampled_image(texture.clone(), sampler.clone()).unwrap()
|
||||
.add_image(attachment_image.clone().unwrap().clone()).unwrap()
|
||||
.build().unwrap()));
|
||||
|
||||
self.graphics_image_buffer = Some(texture.clone());
|
||||
self.graphics_iamge_swap_buffer = Some(attachment_image.clone().unwrap());
|
||||
}
|
||||
|
||||
pub fn run(&mut self, surface: &'a Arc<Surface<Window>>, mut frame_future: Box<dyn GpuFuture>) -> Box<dyn GpuFuture> {
|
||||
|
||||
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
|
||||
self.render_pass.clone().unwrap().clone(),
|
||||
&mut self.dynamic_state);
|
||||
|
||||
let mut recreate_swapchain = false;
|
||||
|
||||
// The docs said to call this on each loop.
|
||||
frame_future.cleanup_finished();
|
||||
|
||||
// Whenever the window resizes we need to recreate everything dependent on the window size.
|
||||
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
|
||||
if recreate_swapchain {
|
||||
self.recreate_swapchain(surface);
|
||||
framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
|
||||
self.render_pass.clone().unwrap().clone(),
|
||||
&mut self.dynamic_state);
|
||||
recreate_swapchain = false;
|
||||
}
|
||||
|
||||
|
||||
// This function can block if no image is available. The parameter is an optional timeout
|
||||
// after which the function call will return an error.
|
||||
let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) {
|
||||
Ok(r) => r,
|
||||
Err(AcquireError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
//continue;
|
||||
panic!("Weird thing");
|
||||
}
|
||||
Err(err) => panic!("{:?}", err)
|
||||
};
|
||||
|
||||
// Specify the color to clear the framebuffer with i.e. blue
|
||||
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
|
||||
|
||||
|
||||
{
|
||||
// In order to draw, we have to build a *command buffer*. The command buffer object holds
|
||||
// the list of commands that are going to be executed.
|
||||
//
|
||||
// Building a command buffer is an expensive operation (usually a few hundred
|
||||
// microseconds), but it is known to be a hot path in the driver and is expected to be
|
||||
// optimized.
|
||||
//
|
||||
// Note that we have to pass a queue family when we create the command buffer. The command
|
||||
// buffer will only be executable on that given queue family.
|
||||
let mut v = Vec::new();
|
||||
v.push(self.vertex_buffer.clone().unwrap().clone());
|
||||
|
||||
let command_buffer =
|
||||
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family())
|
||||
.unwrap()
|
||||
|
||||
.dispatch([self.xy.0, self.xy.1, 1],
|
||||
self.compute_pipeline.clone().unwrap().clone(),
|
||||
self.compute_set.clone().unwrap().clone(), ()).unwrap()
|
||||
|
||||
.copy_buffer_to_image(self.img_buffers.get(0).unwrap().clone(),
|
||||
self.graphics_iamge_swap_buffer.clone().unwrap()).unwrap()
|
||||
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
|
||||
.unwrap()
|
||||
|
||||
.draw(self.graphics_pipeline.clone().unwrap().clone(),
|
||||
&self.dynamic_state, v,
|
||||
self.img_set.clone().unwrap().clone(), ())
|
||||
.unwrap()
|
||||
|
||||
.end_render_pass()
|
||||
.unwrap()
|
||||
|
||||
.build().unwrap();
|
||||
|
||||
let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap();
|
||||
let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
|
||||
let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
|
||||
let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
|
||||
let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
|
||||
let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
|
||||
|
||||
image::Rgba([r, g, b, a])
|
||||
});
|
||||
|
||||
// Wait on the previous frame, then execute the command buffer and present the image
|
||||
let future = frame_future.join(acquire_future)
|
||||
.then_execute(self.queue.clone(), command_buffer).unwrap()
|
||||
.then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num)
|
||||
.then_signal_fence_and_flush();
|
||||
|
||||
match future {
|
||||
Ok(future) => {
|
||||
(Box::new(future) as Box<_>)
|
||||
}
|
||||
Err(FlushError::OutOfDate) => {
|
||||
recreate_swapchain = true;
|
||||
(Box::new(sync::now(self.device.clone())) as Box<_>)
|
||||
}
|
||||
Err(e) => {
|
||||
println!("{:?}", e);
|
||||
(Box::new(sync::now(self.device.clone())) as Box<_>)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// pub fn read_image(&self) -> Vec<u8> {
|
||||
@@ -683,3 +707,4 @@ impl<'a> VkProcessor<'a> {
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user