had a bit of a time finding the problem with the specialization constants being unimplemented. Adding an impl lets rust elicit the pipeline type so I can store it, thank god
This commit is contained in:
29
src/main.rs
29
src/main.rs
@@ -43,6 +43,8 @@ use vulkano::sync::GpuFuture;
|
||||
use shaderc::CompileOptions;
|
||||
use shade_runner::CompileError;
|
||||
use crate::workpiece::{WorkpieceLoader, Workpiece};
|
||||
use winit::{EventsLoop, WindowBuilder};
|
||||
use vulkano_win::VkSurfaceBuild;
|
||||
|
||||
mod slider;
|
||||
mod timer;
|
||||
@@ -82,16 +84,37 @@ Let's take a look at how easy it would be to replace SFML...
|
||||
|
||||
fn main() {
|
||||
|
||||
let font = Font::from_file("resources/fonts/sansation.ttf").unwrap();
|
||||
let instance = {
|
||||
let extensions = vulkano_win::required_extensions();
|
||||
Instance::new(None, &extensions, None).unwrap()
|
||||
};
|
||||
|
||||
let mut events_loop = EventsLoop::new();
|
||||
let mut surface = WindowBuilder::new()
|
||||
.build_vk_surface(&events_loop, instance.clone()).unwrap();
|
||||
let mut window = surface.window();
|
||||
|
||||
|
||||
let mut processor = vkprocessor::VkProcessor::new(&instance, &surface);
|
||||
|
||||
let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
|
||||
let mut processor = vkprocessor::VkProcessor::new(&instance);
|
||||
processor.compile_kernel(String::from("simple-edge.compute"));
|
||||
processor.load_buffers(String::from("funky-bird.jpg"));
|
||||
processor.run_kernel();
|
||||
processor.read_image();
|
||||
processor.save_image();
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
let font = Font::from_file("resources/fonts/sansation.ttf").unwrap();
|
||||
|
||||
|
||||
|
||||
let mut window = RenderWindow::new(
|
||||
(900, 900),
|
||||
"Custom drawable",
|
||||
|
||||
@@ -3,7 +3,7 @@ use vulkano::command_buffer::AutoCommandBufferBuilder;
|
||||
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
|
||||
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
|
||||
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
|
||||
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline};
|
||||
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract};
|
||||
use vulkano::sync::GpuFuture;
|
||||
use vulkano::sync;
|
||||
use std::time::SystemTime;
|
||||
@@ -15,17 +15,56 @@ use image::{DynamicImage, ImageBuffer};
|
||||
use image::GenericImageView;
|
||||
use vulkano::descriptor::pipeline_layout::PipelineLayout;
|
||||
use image::GenericImage;
|
||||
use shade_runner::{ComputeLayout, CompileError, FragLayout};
|
||||
use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout};
|
||||
use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf;
|
||||
use shaderc::CompileOptions;
|
||||
use vulkano::framebuffer::Subpass;
|
||||
use vulkano::pipeline::shader::GraphicsShaderType;
|
||||
use vulkano::framebuffer::{Subpass, RenderPass};
|
||||
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry};
|
||||
use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface};
|
||||
use vulkano::image::swapchain::SwapchainImage;
|
||||
use winit::{EventsLoop, WindowBuilder, Window};
|
||||
use vulkano_win::VkSurfaceBuild;
|
||||
use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex};
|
||||
use vulkano::descriptor::PipelineLayoutAbstract;
|
||||
use std::alloc::Layout;
|
||||
|
||||
#[repr(C)]
|
||||
struct MySpecConstants {
|
||||
my_integer_constant: i32,
|
||||
a_boolean: u32,
|
||||
floating_point: f32,
|
||||
}
|
||||
|
||||
unsafe impl SpecializationConstants for MySpecConstants {
|
||||
fn descriptors() -> &'static [SpecializationMapEntry] {
|
||||
static DESCRIPTORS: [SpecializationMapEntry; 3] = [
|
||||
SpecializationMapEntry {
|
||||
constant_id: 0,
|
||||
offset: 0,
|
||||
size: 4,
|
||||
},
|
||||
SpecializationMapEntry {
|
||||
constant_id: 1,
|
||||
offset: 4,
|
||||
size: 4,
|
||||
},
|
||||
SpecializationMapEntry {
|
||||
constant_id: 2,
|
||||
offset: 8,
|
||||
size: 4,
|
||||
},
|
||||
];
|
||||
|
||||
&DESCRIPTORS
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub struct VkProcessor<'a> {
|
||||
pub instance: Arc<Instance>,
|
||||
pub physical: PhysicalDevice<'a>,
|
||||
pub pipeline: Option<Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>,
|
||||
pub compute_pipeline: (),
|
||||
pub pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
|
||||
pub compute_pipeline: Option<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>,
|
||||
pub device: Arc<Device>,
|
||||
pub queues: QueuesIter,
|
||||
pub queue: Arc<Queue>,
|
||||
@@ -33,19 +72,33 @@ pub struct VkProcessor<'a> {
|
||||
pub image_buffer: Vec<u8>,
|
||||
pub img_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>,
|
||||
pub settings_buffer: Option<Arc<CpuAccessibleBuffer<[u32]>>>,
|
||||
pub swapchain: Option<Arc<Swapchain<Window>>>,
|
||||
pub images: Option<Vec<Arc<SwapchainImage<Window>>>>,
|
||||
pub xy: (u32, u32),
|
||||
}
|
||||
|
||||
impl<'a> VkProcessor<'a> {
|
||||
pub fn new(instance : &'a Arc<Instance>) -> VkProcessor<'a> {
|
||||
pub fn new(instance : &'a Arc<Instance>, surface : &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
|
||||
|
||||
|
||||
let physical = PhysicalDevice::enumerate(instance).next().unwrap();
|
||||
let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap();
|
||||
|
||||
let queue_family = physical.queue_families().find(|&q| {
|
||||
// We take the first queue that supports drawing to our window.
|
||||
q.supports_graphics() &&
|
||||
surface.is_supported(q).unwrap_or(false) &&
|
||||
q.supports_compute()
|
||||
}).unwrap();
|
||||
|
||||
let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() };
|
||||
|
||||
let (device, mut queues) = Device::new(physical,
|
||||
physical.supported_features(),
|
||||
&DeviceExtensions::none(),
|
||||
&device_ext,
|
||||
[(queue_family, 0.5)].iter().cloned()).unwrap();
|
||||
|
||||
let queue = queues.next().unwrap();
|
||||
|
||||
VkProcessor {
|
||||
instance: instance.clone(),
|
||||
physical: physical.clone(),
|
||||
@@ -58,6 +111,8 @@ impl<'a> VkProcessor<'a> {
|
||||
image_buffer: Vec::new(),
|
||||
img_buffers: Vec::new(),
|
||||
settings_buffer: Option::None,
|
||||
swapchain: Option::None,
|
||||
images: Option::None,
|
||||
xy: (0,0),
|
||||
}
|
||||
|
||||
@@ -104,7 +159,52 @@ impl<'a> VkProcessor<'a> {
|
||||
self.compute_pipeline = Some(compute_pipeline);
|
||||
}
|
||||
|
||||
pub fn compile_shaders(&mut self, filename: String) {
|
||||
pub fn compile_shaders(&mut self, filename: String, surface : &'a Arc<Surface<Window>>) {
|
||||
|
||||
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
|
||||
// a swapchain allocates the color buffers that will contain the image that will ultimately
|
||||
// be visible on the screen. These images are returned alongside with the swapchain.
|
||||
let (mut swapchain, images) = {
|
||||
// Querying the capabilities of the surface. When we create the swapchain we can only
|
||||
// pass values that are allowed by the capabilities.
|
||||
let capabilities = surface.capabilities(self.physical).unwrap();
|
||||
|
||||
let usage = capabilities.supported_usage_flags;
|
||||
|
||||
// The alpha mode indicates how the alpha value of the final image will behave. For example
|
||||
// you can choose whether the window will be opaque or transparent.
|
||||
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
|
||||
|
||||
// Choosing the internal format that the images will have.
|
||||
let format = capabilities.supported_formats[0].0;
|
||||
|
||||
// The dimensions of the window, only used to initially setup the swapchain.
|
||||
// NOTE:
|
||||
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
|
||||
// swapchain size must use these dimensions.
|
||||
// These dimensions are always the same as the window dimensions
|
||||
//
|
||||
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
|
||||
// These drivers will allow anything but the only sensible value is the window dimensions.
|
||||
//
|
||||
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
|
||||
let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
|
||||
// convert to physical pixels
|
||||
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
|
||||
[dimensions.0, dimensions.1]
|
||||
} else {
|
||||
// The window no longer exists so exit the application.
|
||||
return;
|
||||
};
|
||||
|
||||
// Please take a look at the docs for the meaning of the parameters we didn't mention.
|
||||
Swapchain::new(self.device.clone(), surface.clone(), capabilities.min_image_count, format,
|
||||
initial_dimensions, 1, usage, &self.queue, SurfaceTransform::Identity, alpha,
|
||||
PresentMode::Fifo, true, None).unwrap()
|
||||
};
|
||||
|
||||
self.swapchain = Some(swapchain);
|
||||
self.images = Some(images);
|
||||
|
||||
let project_root =
|
||||
std::env::current_dir()
|
||||
@@ -113,15 +213,15 @@ impl<'a> VkProcessor<'a> {
|
||||
let mut shader_path = project_root.clone();
|
||||
shader_path.push(PathBuf::from("resources/shaders/"));
|
||||
|
||||
let mut vertex_shader_path = project_root.clone()
|
||||
.push(PathBuf::from("resources/shaders/"));
|
||||
let mut vertex_shader_path = project_root.clone();
|
||||
vertex_shader_path.push(PathBuf::from("resources/shaders/"));
|
||||
vertex_shader_path.push(PathBuf::from(filename.clone()));
|
||||
vertex_shader_path.push(PathBuf::from(".vertex"));
|
||||
|
||||
let mut fragment_shader_path = project_root.clone()
|
||||
.push(PathBuf::from("resources/shaders/"));
|
||||
vertex_shader_path.push(PathBuf::from(filename.clone()));
|
||||
vertex_shader_path.push(PathBuf::from(".fragment"));
|
||||
let mut fragment_shader_path = project_root.clone();
|
||||
fragment_shader_path.push(PathBuf::from("resources/shaders/"));
|
||||
fragment_shader_path.push(PathBuf::from(filename.clone()));
|
||||
fragment_shader_path.push(PathBuf::from(".fragment"));
|
||||
|
||||
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
|
||||
options.add_macro_definition("SETTING_POS_X", Some("0"));
|
||||
@@ -137,68 +237,127 @@ impl<'a> VkProcessor<'a> {
|
||||
sr::parse(&shader)
|
||||
.expect("failed to parse");
|
||||
|
||||
let x = unsafe {
|
||||
let x1 : Arc<ShaderModule> = unsafe {
|
||||
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment)
|
||||
}.unwrap();
|
||||
|
||||
let x2 = unsafe {
|
||||
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.vertex)
|
||||
}.unwrap();
|
||||
|
||||
let frag_entry_point = unsafe {
|
||||
&x.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
||||
let frag_entry_point : GraphicsEntryPoint<MySpecConstants, FragInput, FragOutput, FragLayout> = unsafe {
|
||||
x1.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
||||
vulkano_entry.frag_input,
|
||||
vulkano_entry.frag_output,
|
||||
vulkano_entry.frag_layout, GraphicsShaderType::Fragment)
|
||||
vulkano_entry.frag_layout,
|
||||
GraphicsShaderType::Fragment)
|
||||
};
|
||||
|
||||
let vert_entry_point = unsafe {
|
||||
&x.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
||||
vulkano_entry.frag_input,
|
||||
vulkano_entry.frag_output,
|
||||
vulkano_entry.frag_layout, GraphicsShaderType::Fragment)
|
||||
let vert_entry_point: GraphicsEntryPoint<MySpecConstants, VertInput, VertOutput, VertLayout> = unsafe {
|
||||
x2.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
||||
vulkano_entry.vert_input,
|
||||
vulkano_entry.vert_output,
|
||||
vulkano_entry.vert_layout,
|
||||
GraphicsShaderType::Vertex)
|
||||
};
|
||||
|
||||
// The next step is to create a *render pass*, which is an object that describes where the
|
||||
// output of the graphics pipeline will go. It describes the layout of the images
|
||||
// where the colors, depth and/or stencil information will be written.
|
||||
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
|
||||
self.device.clone(),
|
||||
attachments: {
|
||||
// `color` is a custom name we give to the first and only attachment.
|
||||
color: {
|
||||
// `load: Clear` means that we ask the GPU to clear the content of this
|
||||
// attachment at the start of the drawing.
|
||||
load: Clear,
|
||||
// `store: Store` means that we ask the GPU to store the output of the draw
|
||||
// in the actual image. We could also ask it to discard the result.
|
||||
store: Store,
|
||||
// `format: <ty>` indicates the type of the format of the image. This has to
|
||||
// be one of the types of the `vulkano::format` module (or alternatively one
|
||||
// of your structs that implements the `FormatDesc` trait). Here we use the
|
||||
// same format as the swapchain.
|
||||
format: self.swapchain.clone().unwrap().clone().format(),
|
||||
// TODO:
|
||||
samples: 1,
|
||||
}
|
||||
},
|
||||
pass: {
|
||||
// We use the attachment named `color` as the one and only color attachment.
|
||||
color: [color],
|
||||
// No depth-stencil attachment is indicated with empty brackets.
|
||||
depth_stencil: {}
|
||||
}
|
||||
).unwrap());
|
||||
|
||||
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
|
||||
// program, but much more specific.
|
||||
self.pipeline = Option::Some(Arc::new(GraphicsPipeline::start()
|
||||
|
||||
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
|
||||
// program, but much more specific.
|
||||
let pipeline = GraphicsPipeline::start()
|
||||
// We need to indicate the layout of the vertices.
|
||||
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
|
||||
// to the type of each vertex. But in this code it is automatically inferred.
|
||||
.vertex_input_single_buffer()
|
||||
// .vertex_input_single_buffer()
|
||||
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
|
||||
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
|
||||
// the entry point.
|
||||
.vertex_shader(vert_entry_point, ())
|
||||
.vertex_shader(vert_entry_point, MySpecConstants {
|
||||
my_integer_constant: 0,
|
||||
a_boolean: 0,
|
||||
floating_point: 0.0
|
||||
})
|
||||
// The content of the vertex buffer describes a list of triangles.
|
||||
.triangle_list()
|
||||
// Use a resizable viewport set to draw over the entire window
|
||||
.viewports_dynamic_scissors_irrelevant(1)
|
||||
// See `vertex_shader`.
|
||||
.fragment_shader(frag_entry_point, ())
|
||||
.fragment_shader(frag_entry_point, MySpecConstants {
|
||||
my_integer_constant: 0,
|
||||
a_boolean: 0,
|
||||
floating_point: 0.0
|
||||
})
|
||||
// We have to indicate which subpass of which render pass this pipeline is going to be used
|
||||
// in. The pipeline will only be usable from this particular subpass.
|
||||
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
|
||||
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
|
||||
.build(device.clone())
|
||||
.unwrap()));
|
||||
.build(self.device.clone())
|
||||
.unwrap();
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
let x = unsafe {
|
||||
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment)
|
||||
}.unwrap();
|
||||
|
||||
let pipeline = Arc::new({
|
||||
unsafe {
|
||||
ComputePipeline::new(self.device.clone(), &x.compute_entry_point(
|
||||
CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
||||
vulkano_entry.compute_layout), &(),
|
||||
).unwrap()
|
||||
self.pipeline = Option::Some(Arc::new(pipeline));
|
||||
}
|
||||
});
|
||||
|
||||
self.pipeline = Some(pipeline);
|
||||
pub fn create_renderpass(&mut self) {
|
||||
|
||||
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
|
||||
self.device.clone(),
|
||||
attachments: {
|
||||
// `color` is a custom name we give to the first and only attachment.
|
||||
color: {
|
||||
// `load: Clear` means that we ask the GPU to clear the content of this
|
||||
// attachment at the start of the drawing.
|
||||
load: Clear,
|
||||
// `store: Store` means that we ask the GPU to store the output of the draw
|
||||
// in the actual image. We could also ask it to discard the result.
|
||||
store: Store,
|
||||
// `format: <ty>` indicates the type of the format of the image. This has to
|
||||
// be one of the types of the `vulkano::format` module (or alternatively one
|
||||
// of your structs that implements the `FormatDesc` trait). Here we use the
|
||||
// same format as the swapchain.
|
||||
format: self.swapchain.clone().unwrap().clone().format(),
|
||||
// TODO:
|
||||
samples: 1,
|
||||
}
|
||||
},
|
||||
pass: {
|
||||
// We use the attachment named `color` as the one and only color attachment.
|
||||
color: [color],
|
||||
// No depth-stencil attachment is indicated with empty brackets.
|
||||
depth_stencil: {}
|
||||
}
|
||||
).unwrap());
|
||||
}
|
||||
|
||||
pub fn load_buffers(&mut self, image_filename: String)
|
||||
@@ -268,7 +427,7 @@ impl<'a> VkProcessor<'a> {
|
||||
|
||||
// Create the data descriptor set for our previously created shader pipeline
|
||||
let mut set =
|
||||
PersistentDescriptorSet::start(self.pipeline.clone().unwrap().clone(), 0)
|
||||
PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0)
|
||||
.add_buffer(write_buffer.clone()).unwrap()
|
||||
.add_buffer(read_buffer.clone()).unwrap()
|
||||
.add_buffer(settings_buffer.clone()).unwrap();
|
||||
@@ -280,37 +439,6 @@ impl<'a> VkProcessor<'a> {
|
||||
self.settings_buffer = Some(settings_buffer);
|
||||
}
|
||||
|
||||
pub fn create_renderpass(&mut self) {
|
||||
|
||||
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
|
||||
self.device.clone(),
|
||||
attachments: {
|
||||
// `color` is a custom name we give to the first and only attachment.
|
||||
color: {
|
||||
// `load: Clear` means that we ask the GPU to clear the content of this
|
||||
// attachment at the start of the drawing.
|
||||
load: Clear,
|
||||
// `store: Store` means that we ask the GPU to store the output of the draw
|
||||
// in the actual image. We could also ask it to discard the result.
|
||||
store: Store,
|
||||
// `format: <ty>` indicates the type of the format of the image. This has to
|
||||
// be one of the types of the `vulkano::format` module (or alternatively one
|
||||
// of your structs that implements the `FormatDesc` trait). Here we use the
|
||||
// same format as the swapchain.
|
||||
format: swapchain.format(),
|
||||
// TODO:
|
||||
samples: 1,
|
||||
}
|
||||
},
|
||||
pass: {
|
||||
// We use the attachment named `color` as the one and only color attachment.
|
||||
color: [color],
|
||||
// No depth-stencil attachment is indicated with empty brackets.
|
||||
depth_stencil: {}
|
||||
}
|
||||
).unwrap());
|
||||
}
|
||||
|
||||
pub fn run_kernel(&mut self) {
|
||||
|
||||
println!("Running Kernel...");
|
||||
@@ -319,7 +447,7 @@ impl<'a> VkProcessor<'a> {
|
||||
let command_buffer =
|
||||
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap()
|
||||
.dispatch([self.xy.0, self.xy.1, 1],
|
||||
self.pipeline.clone().unwrap().clone(),
|
||||
self.compute_pipeline.clone().unwrap().clone(),
|
||||
self.set.clone().unwrap().clone(), ()).unwrap()
|
||||
.build().unwrap();
|
||||
|
||||
|
||||
Reference in New Issue
Block a user