separating out vulkan stuff
This commit is contained in:
@@ -66,14 +66,8 @@ void main() {
|
||||
|
||||
p = current_best_p;
|
||||
|
||||
|
||||
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
|
||||
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);
|
||||
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16);
|
||||
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24);
|
||||
|
||||
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
|
||||
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);
|
||||
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16);
|
||||
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24);
|
||||
}
|
||||
172
src/main.rs
172
src/main.rs
@@ -19,6 +19,7 @@ use sfml::system::*;
|
||||
use sfml::system::Vector2 as sfVec2;
|
||||
use sfml::window::*;
|
||||
use sfml::window::{Event, Key, Style};
|
||||
use sfml::window::mouse::Button;
|
||||
|
||||
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
|
||||
use vulkano::command_buffer::AutoCommandBufferBuilder;
|
||||
@@ -46,142 +47,12 @@ mod slider;
|
||||
mod timer;
|
||||
mod input;
|
||||
mod util;
|
||||
mod vkprocessor;
|
||||
|
||||
fn main() {
|
||||
|
||||
// Load up the input image, determine some details
|
||||
let mut img = image::open("resources/images/funky-bird.jpg").unwrap();
|
||||
let xy = img.dimensions();
|
||||
let data_length = xy.0 * xy.1 * 4;
|
||||
let mut image_buffer = Vec::new();
|
||||
let processor = vkprocessor::VkProcessor::new();
|
||||
|
||||
{
|
||||
// Create the vulkan instance, device, and device queue
|
||||
let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
|
||||
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
|
||||
let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap();
|
||||
let (device, mut queues) = Device::new(physical,
|
||||
physical.supported_features(),
|
||||
&DeviceExtensions::none(),
|
||||
[(queue_family, 0.5)].iter().cloned()).unwrap();
|
||||
let queue = queues.next().unwrap();
|
||||
|
||||
println!("Device initialized");
|
||||
|
||||
let project_root = std::env::current_dir().expect("failed to get root directory");
|
||||
let mut compute_path = project_root.clone();
|
||||
compute_path.push(PathBuf::from("resources/shaders/simple-homogenize.compute"));
|
||||
|
||||
let shader = sr::load_compute(compute_path).expect("Failed to compile");
|
||||
let vulkano_entry = sr::parse_compute(&shader).expect("failed to parse");
|
||||
|
||||
let x = unsafe {
|
||||
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.compute)
|
||||
}.unwrap();
|
||||
|
||||
// Compile the shader and add it to a pipeline
|
||||
let pipeline = Arc::new({
|
||||
unsafe {
|
||||
ComputePipeline::new(device.clone(), &x.compute_entry_point(
|
||||
CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
||||
vulkano_entry.compute_layout), &()
|
||||
).unwrap()
|
||||
}
|
||||
});
|
||||
|
||||
let pixel_count = img.raw_pixels().len();
|
||||
println!("Pixel count {}", pixel_count);
|
||||
|
||||
if pixel_count != data_length as usize {
|
||||
for i in img.raw_pixels().iter() {
|
||||
if (image_buffer.len() + 1) % 4 == 0 {
|
||||
image_buffer.push(255);
|
||||
}
|
||||
image_buffer.push(*i);
|
||||
}
|
||||
image_buffer.push(255);
|
||||
} else {
|
||||
image_buffer = img.raw_pixels();
|
||||
}
|
||||
|
||||
println!("Buffer length {}", image_buffer.len());
|
||||
println!("Size {:?}", xy);
|
||||
|
||||
println!("Allocating Buffers...");
|
||||
{
|
||||
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
|
||||
let write_buffer = {
|
||||
let mut buff = image_buffer.iter();
|
||||
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
|
||||
};
|
||||
|
||||
// Pull out the image data and place it in a buffer for the kernel to read from
|
||||
let read_buffer = {
|
||||
let mut buff = image_buffer.iter();
|
||||
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
|
||||
};
|
||||
|
||||
// A buffer to hold many i32 values to use as settings
|
||||
let settings_buffer = {
|
||||
let vec = vec![xy.0, xy.1];
|
||||
let mut buff = vec.iter();
|
||||
let data_iter = (0..2).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
|
||||
};
|
||||
|
||||
println!("Done");
|
||||
// Create the data descriptor set for our previously created shader pipeline
|
||||
let mut set = PersistentDescriptorSet::start(pipeline.clone(), 0)
|
||||
.add_buffer(write_buffer.clone()).unwrap()
|
||||
.add_buffer(read_buffer.clone()).unwrap()
|
||||
.add_buffer(settings_buffer.clone()).unwrap();
|
||||
|
||||
let mut set = Arc::new(set.build().unwrap());
|
||||
|
||||
println!("Running Kernel...");
|
||||
// The command buffer I think pretty much serves to define what runs where for how many times
|
||||
let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
|
||||
.dispatch([xy.0, xy.1, 1], pipeline.clone(), set.clone(), ()).unwrap()
|
||||
.build().unwrap();
|
||||
|
||||
// Create a future for running the command buffer and then just fence it
|
||||
let future = sync::now(device.clone())
|
||||
.then_execute(queue.clone(), command_buffer).unwrap()
|
||||
.then_signal_fence_and_flush().unwrap();
|
||||
|
||||
// I think this is redundant and returns immediately
|
||||
future.wait(None).unwrap();
|
||||
|
||||
println!("Done running kernel");
|
||||
|
||||
// The buffer is sync'd so we can just read straight from the handle
|
||||
let mut data_buffer_content = write_buffer.read().unwrap();
|
||||
|
||||
println!("Reading output");
|
||||
|
||||
for y in 0..xy.1 {
|
||||
for x in 0..xy.0 {
|
||||
let r = data_buffer_content[((xy.0 * y + x) * 4 + 0) as usize] as u8;
|
||||
let g = data_buffer_content[((xy.0 * y + x) * 4 + 1) as usize] as u8;
|
||||
let b = data_buffer_content[((xy.0 * y + x) * 4 + 2) as usize] as u8;
|
||||
let a = data_buffer_content[((xy.0 * y + x) * 4 + 3) as usize] as u8;
|
||||
|
||||
*image_buffer.get_mut(((xy.0 * y + x) * 4 + 0) as usize).unwrap() = r;
|
||||
*image_buffer.get_mut(((xy.0 * y + x) * 4 + 1) as usize).unwrap() = g;
|
||||
*image_buffer.get_mut(((xy.0 * y + x) * 4 + 2) as usize).unwrap() = b;
|
||||
*image_buffer.get_mut(((xy.0 * y + x) * 4 + 3) as usize).unwrap() = a;
|
||||
|
||||
img.put_pixel(x, y, image::Rgba([r, g, b, a]))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Currently bringing all this start shit outta scope to see if it stops my gpu from screaming
|
||||
println!("Saving output");
|
||||
img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
|
||||
}
|
||||
|
||||
let mut window = RenderWindow::new(
|
||||
(900, 900),
|
||||
@@ -203,14 +74,18 @@ fn main() {
|
||||
|
||||
let mut slider = Slider::new(40.0, None);
|
||||
|
||||
let step_size: f32 = 0.005;
|
||||
let mut elapsed_time: f32;
|
||||
let mut delta_time: f32;
|
||||
|
||||
let mut selected_colors = Vec::new();
|
||||
selected_colors.push(RectangleShape::with_size(Vector2f::new(30.0, 30.0)));
|
||||
|
||||
|
||||
let step_size: f32 = 0.005;
|
||||
let mut elapsed_time: f32;
|
||||
let mut delta_time: f32;
|
||||
let mut accumulator_time: f32 = 0.0;
|
||||
let mut current_time: f32 = timer.elap_time();
|
||||
let mut current_time: f32 = timer.elap_time();
|
||||
|
||||
while window.is_open() {
|
||||
|
||||
while let Some(event) = window.poll_event() {
|
||||
match event {
|
||||
Event::Closed => return,
|
||||
@@ -219,19 +94,20 @@ fn main() {
|
||||
return;
|
||||
}
|
||||
}
|
||||
Event::MouseButtonPressed { button, x, y } => {
|
||||
if button == Button::Left {
|
||||
return;
|
||||
}
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
input.ingest(&event)
|
||||
}
|
||||
|
||||
if input.is_held(Key::W) {
|
||||
}
|
||||
if input.is_held(Key::A) {
|
||||
}
|
||||
if input.is_held(Key::S) {
|
||||
}
|
||||
if input.is_held(Key::D) {
|
||||
}
|
||||
if input.is_held(Key::W) {}
|
||||
if input.is_held(Key::A) {}
|
||||
if input.is_held(Key::S) {}
|
||||
if input.is_held(Key::D) {}
|
||||
|
||||
elapsed_time = timer.elap_time();
|
||||
delta_time = elapsed_time - current_time;
|
||||
@@ -248,10 +124,14 @@ fn main() {
|
||||
window.clear(&Color::BLACK);
|
||||
|
||||
window.draw(&background_sprite);
|
||||
|
||||
// for i in selected_colors {
|
||||
//
|
||||
// }
|
||||
|
||||
window.draw(&slider);
|
||||
|
||||
|
||||
window.display();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
213
src/vkprocessor.rs
Normal file
213
src/vkprocessor.rs
Normal file
@@ -0,0 +1,213 @@
|
||||
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
|
||||
use vulkano::command_buffer::AutoCommandBufferBuilder;
|
||||
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
|
||||
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
|
||||
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
|
||||
use vulkano::pipeline::ComputePipeline;
|
||||
use vulkano::sync::GpuFuture;
|
||||
use vulkano::sync;
|
||||
use std::time::SystemTime;
|
||||
use std::sync::Arc;
|
||||
use std::ffi::CStr;
|
||||
use std::path::PathBuf;
|
||||
use shade_runner as sr;
|
||||
use image::DynamicImage;
|
||||
|
||||
pub struct VkProcessor<'a> {
|
||||
instance: Arc<Instance>,
|
||||
physical: PhysicalDevice<'a>,
|
||||
queue_family: QueueFamily<'a>,
|
||||
device: Arc<Device>,
|
||||
queues: QueuesIter,
|
||||
queue: Arc<Queue>,
|
||||
img: Option<DynamicImage>,
|
||||
image_buffer: Vec<u8>,
|
||||
buffers: Vec::
|
||||
}
|
||||
|
||||
impl VkProcessor {
|
||||
pub fn new() -> VkProcessor {
|
||||
let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
|
||||
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
|
||||
let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap();
|
||||
let (device, mut queues) = Device::new(physical,
|
||||
physical.supported_features(),
|
||||
&DeviceExtensions::none(),
|
||||
[(queue_family, 0.5)].iter().cloned()).unwrap();
|
||||
VkProcessor {
|
||||
instance: instance,
|
||||
physical: physical,
|
||||
queue_family: queue_family,
|
||||
device: device,
|
||||
queues: queues,
|
||||
queue: queues.next().unwrap(),
|
||||
img: Option::None,
|
||||
image_buffer: Vec::new(),
|
||||
buffers: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn compile_kernel(&mut self) {
|
||||
let project_root = std::env::current_dir().expect("failed to get root directory");
|
||||
let mut compute_path = project_root.clone();
|
||||
compute_path.push(PathBuf::from("resources/shaders/simple-homogenize.compute"));
|
||||
|
||||
let shader = sr::load_compute(compute_path).expect("Failed to compile");
|
||||
let vulkano_entry = sr::parse_compute(&shader).expect("failed to parse");
|
||||
|
||||
let x = unsafe {
|
||||
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.compute)
|
||||
}.unwrap();
|
||||
|
||||
// Compile the shader and add it to a pipeline
|
||||
let pipeline = Arc::new({
|
||||
unsafe {
|
||||
ComputePipeline::new(self.device.clone(), &x.compute_entry_point(
|
||||
CStr::from_bytes_with_nul_unchecked(b"main\0"),
|
||||
vulkano_entry.compute_layout), &(),
|
||||
).unwrap()
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
pub fn load_buffers(&mut self) {
|
||||
|
||||
self.img = Option::Some(image::open("resources/images/funky-bird.jpg").unwrap());
|
||||
|
||||
let xy = self.img.dimensions();
|
||||
let data_length = xy.0 * xy.1 * 4;
|
||||
let pixel_count = self.img.raw_pixels().len();
|
||||
println!("Pixel count {}", pixel_count);
|
||||
|
||||
if pixel_count != data_length as usize {
|
||||
println!("Creating apha channel...");
|
||||
for i in self.img.raw_pixels().iter() {
|
||||
if (self.image_buffer.len() + 1) % 4 == 0 {
|
||||
self.image_buffer.push(255);
|
||||
}
|
||||
self.image_buffer.push(*i);
|
||||
}
|
||||
self.image_buffer.push(255);
|
||||
} else {
|
||||
self.image_buffer = self.img.raw_pixels();
|
||||
}
|
||||
|
||||
println!("Buffer length {}", self.image_buffer.len());
|
||||
println!("Size {:?}", xy);
|
||||
|
||||
println!("Allocating Buffers...");
|
||||
{
|
||||
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
|
||||
let write_buffer = {
|
||||
let mut buff = image_buffer.iter();
|
||||
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
|
||||
};
|
||||
|
||||
// Pull out the image data and place it in a buffer for the kernel to read from
|
||||
let read_buffer = {
|
||||
let mut buff = image_buffer.iter();
|
||||
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
|
||||
};
|
||||
|
||||
// A buffer to hold many i32 values to use as settings
|
||||
let settings_buffer = {
|
||||
let vec = vec![xy.0, xy.1];
|
||||
let mut buff = vec.iter();
|
||||
let data_iter = (0..2).map(|n| *(buff.next().unwrap()));
|
||||
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
|
||||
};
|
||||
}
|
||||
|
||||
println!("Done");
|
||||
|
||||
// Create the data descriptor set for our previously created shader pipeline
|
||||
let mut set = PersistentDescriptorSet::start(pipeline.clone(), 0)
|
||||
.add_buffer(write_buffer.clone()).unwrap()
|
||||
.add_buffer(read_buffer.clone()).unwrap()
|
||||
.add_buffer(settings_buffer.clone()).unwrap();
|
||||
|
||||
let mut set = Arc::new(set.build().unwrap());
|
||||
}
|
||||
|
||||
pub fn run_kernel(&mut self) {
|
||||
println!("Running Kernel...");
|
||||
// The command buffer I think pretty much serves to define what runs where for how many times
|
||||
let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
|
||||
.dispatch([xy.0, xy.1, 1], pipeline.clone(), set.clone(), ()).unwrap()
|
||||
.build().unwrap();
|
||||
|
||||
// Create a future for running the command buffer and then just fence it
|
||||
let future = sync::now(device.clone())
|
||||
.then_execute(queue.clone(), command_buffer).unwrap()
|
||||
.then_signal_fence_and_flush().unwrap();
|
||||
|
||||
// I think this is redundant and returns immediately
|
||||
future.wait(None).unwrap();
|
||||
println!("Done running kernel");
|
||||
}
|
||||
|
||||
pub fn read_image() -> Vec<u8> {
|
||||
|
||||
// The buffer is sync'd so we can just read straight from the handle
|
||||
let mut data_buffer_content = write_buffer.read().unwrap();
|
||||
|
||||
println!("Reading output");
|
||||
|
||||
let mut image_buffer = Vec::new();
|
||||
|
||||
for y in 0..xy.1 {
|
||||
for x in 0..xy.0 {
|
||||
|
||||
let r = data_buffer_content[((xy.0 * y + x) * 4 + 0) as usize] as u8;
|
||||
let g = data_buffer_content[((xy.0 * y + x) * 4 + 1) as usize] as u8;
|
||||
let b = data_buffer_content[((xy.0 * y + x) * 4 + 2) as usize] as u8;
|
||||
let a = data_buffer_content[((xy.0 * y + x) * 4 + 3) as usize] as u8;
|
||||
|
||||
image_buffer.push(r);
|
||||
image_buffer.push(g);
|
||||
image_buffer.push(b);
|
||||
image_buffer.push(a);
|
||||
|
||||
img.put_pixel(x, y, image::Rgba([r, g, b, a]))
|
||||
}
|
||||
}
|
||||
|
||||
image_buffer
|
||||
}
|
||||
|
||||
pub fn save_image(&self) {
|
||||
println!("Saving output");
|
||||
img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user