Rewrote the entire thing using my new OpenCL template. Makes small one offs like these reallly simple

This commit is contained in:
MitchellHansen
2017-04-04 05:33:38 -07:00
parent 08fd8b2398
commit 7743321465
27 changed files with 2314 additions and 1375 deletions

149
include/OpenCL.h Normal file
View File

@@ -0,0 +1,149 @@
#pragma once
#include <string>
#include <SFML/Graphics.hpp>
#include <unordered_map>
#include <iostream>
#include "Vector4.hpp"
#include <string.h>
#include <memory>
#ifdef linux
#include <CL/cl.h>
#include <CL/opencl.h>
#include <GL/glx.h>
#elif defined _WIN32
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
#include <CL/cl_gl.h>
#include <CL/cl.h>
#include <CL/opencl.h>
// Note: windows.h must be included before Gl/GL.h
#include <windows.h>
#include <GL/GL.h>
#elif defined TARGET_OS_MAC
#include <OpenCL/opencl.h>
#endif
class OpenCL {
public:
OpenCL();
~OpenCL();
// command queues are associated with a device and context, so for multi-gpu applications you would need
// multiple command queues
// CONTEXTS
// - An OpenCL context is created with one or more devices. Contexts are used by the OpenCL runtime
// for managing objects such as command - queues, memory, program and kernel objects and for executing
// kernels on one or more devices specified in the context.
// - Contexts cannot be created using more than one platform!
bool init();
bool compile_kernel(std::string kernel_path, std::string kernel_name);
// Create an image buffer from an SF texture. Access Type is the read/write specifier required by OpenCL
bool create_image_buffer_from_texture(std::string buffer_name, sf::Texture* texture, cl_int access_type);
// Have CL create and manage the texture for the image buffer. Access Type is the read/write specifier required by OpenCL
bool create_image_buffer(std::string buffer_name, sf::Vector2i size, sf::Vector2f position, cl_int access_type);
// Create a buffer with CL_MEM_READ_ONLY and CL_MEM_COPY_HOST_PTR
int create_buffer(std::string buffer_name, cl_uint size, void* data);
// Create a buffer with user defined data access flags
int create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags);
int set_kernel_arg(std::string kernel_name, int index, std::string buffer_name);
void run_kernel(std::string kernel_name, sf::Vector2i work_size);
void draw(sf::RenderWindow *window);
class device {
public:
#pragma pack(push, 1)
struct packed_data {
cl_device_type device_type;
cl_uint clock_frequency;
char opencl_version[64];
cl_uint compute_units;
char device_extensions[1024];
char device_name[256];
char platform_name[128];
};
#pragma pack(pop)
device(cl_device_id device_id, cl_platform_id platform_id);
device(const device& d);
void print(std::ostream& stream) const;
void print_packed_data(std::ostream& stream);
cl_device_id getDeviceId() const { return device_id; };
cl_platform_id getPlatformId() const { return platform_id; };
private:
packed_data data;
cl_device_id device_id;
cl_platform_id platform_id;
cl_bool is_little_endian = false;
bool cl_gl_sharing = false;
};
private:
int error = 0;
// The device which we have selected according to certain criteria
cl_platform_id platform_id;
cl_device_id device_id;
// The GL shared context and its subsiquently generated command queue
cl_context context;
cl_command_queue command_queue;
// Maps which contain a mapping from "name" to the host side CL memory object
std::unordered_map<std::string, cl_kernel> kernel_map;
std::unordered_map<std::string, cl_mem> buffer_map;
std::unordered_map<std::string, std::pair<sf::Sprite, std::unique_ptr<sf::Texture>>> image_map;
std::vector<device> device_list;
// Query the hardware on this machine and store the devices
bool aquire_hardware();
// After aquiring hardware, create a shared context using platform specific CL commands
bool create_shared_context();
// Command queues must be created with a valid context
bool create_command_queue();
// Store a cl_mem object in the buffer map <string:name, cl_mem:buffer>
bool store_buffer(cl_mem buffer, std::string buffer_name);
// Using CL release the memory object and remove the KVP associated with the buffer name
bool release_buffer(std::string buffer_name);
bool load_config();
void save_config();
static bool vr_assert(int error_code, std::string function_name);
};

479
include/Vector4.hpp Normal file
View File

@@ -0,0 +1,479 @@
////////////////////////////////////////////////////////////
//
// This is a small addition to the SFML sf::Vector templates which
// adds a sf::Vector4(f, i, u)
//
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2016 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
#ifndef SFML_VECTOR4_H
#define SFML_VECTOR4_H
namespace sf {
////////////////////////////////////////////////////////////
/// \brief Utility template class for manipulating
/// 2-dimensional vectors
///
////////////////////////////////////////////////////////////
template <typename T>
class Vector4 {
public:
////////////////////////////////////////////////////////////
/// \brief Default constructor
///
/// Creates a Vector4(0, 0).
///
////////////////////////////////////////////////////////////
Vector4();
////////////////////////////////////////////////////////////
/// \brief Construct the vector from its coordinates
///
/// \param X X coordinate
/// \param Y Y coordinate
///
////////////////////////////////////////////////////////////
Vector4(T X, T Y, T Z, T W);
////////////////////////////////////////////////////////////
/// \brief Construct the vector from another type of vector
///
/// This constructor doesn't replace the copy constructor,
/// it's called only when U != T.
/// A call to this constructor will fail to compile if U
/// is not convertible to T.
///
/// \param vector Vector to convert
///
////////////////////////////////////////////////////////////
template <typename U>
explicit Vector4(const Vector4<U>& vector);
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
T x; ///< X coordinate of the vector
T y; ///< Y coordinate of the vector
T z; ///< Z coordinate of the vector
T w; ///< W coordinate of the vector
};
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of unary operator -
///
/// \param right Vector to negate
///
/// \return Memberwise opposite of the vector
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator -(const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator +=
///
/// This operator performs a memberwise addition of both vectors,
/// and assigns the result to \a left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T>& operator +=(Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator -=
///
/// This operator performs a memberwise subtraction of both vectors,
/// and assigns the result to \a left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T>& operator -=(Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator +
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Memberwise addition of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator +(const Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator -
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Memberwise subtraction of both vectors
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator -(const Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator *
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Memberwise multiplication by \a right
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator *(const Vector4<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator *
///
/// \param left Left operand (a scalar value)
/// \param right Right operand (a vector)
///
/// \return Memberwise multiplication by \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator *(T left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator *=
///
/// This operator performs a memberwise multiplication by \a right,
/// and assigns the result to \a left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T>& operator *=(Vector4<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator /
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Memberwise division by \a right
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T> operator /(const Vector4<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator /=
///
/// This operator performs a memberwise division by \a right,
/// and assigns the result to \a left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to \a left
///
////////////////////////////////////////////////////////////
template <typename T>
Vector4<T>& operator /=(Vector4<T>& left, T right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator ==
///
/// This operator compares strict equality between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return True if \a left is equal to \a right
///
////////////////////////////////////////////////////////////
template <typename T>
bool operator ==(const Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
/// \relates Vector4
/// \brief Overload of binary operator !=
///
/// This operator compares strict difference between two vectors.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return True if \a left is not equal to \a right
///
////////////////////////////////////////////////////////////
template <typename T>
bool operator !=(const Vector4<T>& left, const Vector4<T>& right);
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>::Vector4() :
x(0),
y(0),
z(0),
w(0){
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>::Vector4(T X, T Y, T Z, T W) :
x(X),
y(Y),
z(Z),
w(W) {
}
////////////////////////////////////////////////////////////
template <typename T>
template <typename U>
inline Vector4<T>::Vector4(const Vector4<U>& vector) :
x(static_cast<T>(vector.x)),
y(static_cast<T>(vector.y)),
z(static_cast<T>(vector.z)),
w(static_cast<T>(vector.w)) {
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator -(const Vector4<T>& right) {
return Vector4<T>(
-right.x,
-right.y,
-right.z,
-right.w
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>& operator +=(Vector4<T>& left, const Vector4<T>& right) {
left.x += right.x;
left.y += right.y;
left.z += right.z;
left.w += right.w;
return left;
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>& operator -=(Vector4<T>& left, const Vector4<T>& right) {
left.x -= right.x;
left.y -= right.y;
left.z -= right.z;
left.w -= right.w;
return left;
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator +(const Vector4<T>& left, const Vector4<T>& right) {
return Vector4<T>(
left.x + right.x,
left.y + right.y,
left.z + right.z,
left.w + right.w
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator -(const Vector4<T>& left, const Vector4<T>& right) {
return Vector4<T>(
left.x - right.x,
left.y - right.y,
left.z - right.z,
left.w - right.w
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator *(const Vector4<T>& left, T right) {
return Vector4<T>(
left.x * right,
left.y * right,
left.z * right,
left.w * right
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator *(T left, const Vector4<T>& right) {
return Vector4<T>(
right.x * left,
right.y * left,
right.z * left,
right.w * left
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>& operator *=(Vector4<T>& left, T right) {
left.x *= right;
left.y *= right;
left.z *= right;
left.w *= right;
return left;
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T> operator /(const Vector4<T>& left, T right) {
return Vector4<T>(
left.x / right,
left.y / right,
left.z / right,
left.w / right
);
}
////////////////////////////////////////////////////////////
template <typename T>
inline Vector4<T>& operator /=(Vector4<T>& left, T right) {
left.x /= right;
left.y /= right;
left.z /= right;
left.w /= right;
return left;
}
////////////////////////////////////////////////////////////
template <typename T>
inline bool operator ==(const Vector4<T>& left, const Vector4<T>& right) {
return
(left.x == right.x) &&
(left.y == right.y) &&
(left.z == right.z) &&
(left.w == right.w);;
}
////////////////////////////////////////////////////////////
template <typename T>
inline bool operator !=(const Vector4<T>& left, const Vector4<T>& right) {
return
(left.x != right.x) ||
(left.y != right.y) ||
(left.z != right.z) ||
(left.w != right.w);
}
// Define the most common types
typedef Vector4<int> Vector4i;
typedef Vector4<unsigned int> Vector4u;
typedef Vector4<float> Vector4f;
} // namespace sf
#endif // SFML_Vector4_HPP
////////////////////////////////////////////////////////////
/// \class sf::Vector4
/// \ingroup system
///
/// sf::Vector4 is a simple class that defines a mathematical
/// vector with two coordinates (x and y). It can be used to
/// represent anything that has two dimensions: a size, a point,
/// a velocity, etc.
///
/// The template parameter T is the type of the coordinates. It
/// can be any type that supports arithmetic operations (+, -, /, *)
/// and comparisons (==, !=), for example int or float.
///
/// You generally don't have to care about the templated form (sf::Vector4<T>),
/// the most common specializations have special typedefs:
/// \li sf::Vector4<float> is sf::Vector4f
/// \li sf::Vector4<int> is sf::Vector4i
/// \li sf::Vector4<unsigned int> is sf::Vector4u
///
/// The sf::Vector4 class has a small and simple interface, its x and y members
/// can be accessed directly (there are no accessors like setX(), getX()) and it
/// contains no mathematical function like dot product, cross product, length, etc.
///
/// Usage example:
/// \code
/// sf::Vector4f v1(16.5f, 24.f);
/// v1.x = 18.2f;
/// float y = v1.y;
///
/// sf::Vector4f v2 = v1 * 5.f;
/// sf::Vector4
/// v3 = v1 + v2;
///
/// bool different = (v2 != v3);
/// \endcode
///
/// Note: for 3-dimensional vectors, see sf::Vector3.
///
////////////////////////////////////////////////////////////

159
include/util.hpp Normal file
View File

@@ -0,0 +1,159 @@
#pragma once
#include <SFML/Graphics.hpp>
#include <SFML/Graphics/VertexArray.hpp>
#include "Vector4.hpp"
#include <math.h>
#include <bitset>
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <iterator>
#include <list>
#include <algorithm>
const double PI = 3.141592653589793238463;
const float PI_F = 3.14159265358979f;
inline sf::Vector3f SphereToCart(sf::Vector2f i) {
auto r = sf::Vector3f(
(1 * sin(i.y) * cos(i.x)),
(1 * sin(i.y) * sin(i.x)),
(1 * cos(i.y))
);
return r;
};
inline sf::Vector3f SphereToCart(sf::Vector3f i) {
auto r = sf::Vector3f(
(i.x * sin(i.z) * cos(i.y)),
(i.x * sin(i.z) * sin(i.y)),
(i.x * cos(i.z))
);
return r;
};
inline sf::Vector3f CartToSphere(sf::Vector3f in) {
auto r = sf::Vector3f(
sqrt(in.x * in.x + in.y * in.y + in.z * in.z),
atan(in.y / in.x),
atan(sqrt(in.x * in.x + in.y * in.y) / in.z)
);
return r;
};
inline sf::Vector2f CartToNormalizedSphere(sf::Vector3f in) {
auto r = sf::Vector2f(
atan2(sqrt(in.x * in.x + in.y * in.y), in.z),
atan2(in.y, in.x)
);
return r;
}
inline sf::Vector3f FixOrigin(sf::Vector3f base, sf::Vector3f head) {
return head - base;
}
inline sf::Vector3f Normalize(sf::Vector3f in) {
float multiplier = sqrt(in.x * in.x + in.y * in.y + in.z * in.z);
auto r = sf::Vector3f(
in.x / multiplier,
in.y / multiplier,
in.z / multiplier
);
return r;
}
inline float DotProduct(sf::Vector3f a, sf::Vector3f b){
return a.x * b.x + a.y * b.y + a.z * b.z;
}
inline float Magnitude(sf::Vector3f in){
return sqrt(in.x * in.x + in.y * in.y + in.z * in.z);
}
inline float AngleBetweenVectors(sf::Vector3f a, sf::Vector3f b){
return acos(DotProduct(a, b) / (Magnitude(a) * Magnitude(b)));
}
inline float DistanceBetweenPoints(sf::Vector3f a, sf::Vector3f b) {
return sqrt(DotProduct(a, b));
}
inline float DegreesToRadians(float in) {
return static_cast<float>(in * PI / 180.0f);
}
inline float RadiansToDegrees(float in) {
return static_cast<float>(in * 180.0f / PI);
}
inline std::string read_file(std::string file_name){
std::ifstream input_file(file_name);
if (!input_file.is_open()){
std::cout << file_name << " could not be opened" << std::endl;
return "";
}
std::stringstream buf;
buf << input_file.rdbuf();
input_file.close();
return buf.str();
}
inline void PrettyPrintUINT64(uint64_t i, std::stringstream* ss) {
*ss << "[" << std::bitset<15>(i) << "]";
*ss << "[" << std::bitset<1>(i >> 15) << "]";
*ss << "[" << std::bitset<8>(i >> 16) << "]";
*ss << "[" << std::bitset<8>(i >> 24) << "]";
*ss << "[" << std::bitset<32>(i >> 32) << "]";
}
inline void PrettyPrintUINT64(uint64_t i) {
std::cout << "[" << std::bitset<15>(i) << "]";
std::cout << "[" << std::bitset<1>(i >> 15) << "]";
std::cout << "[" << std::bitset<8>(i >> 16) << "]";
std::cout << "[" << std::bitset<8>(i >> 24) << "]";
std::cout << "[" << std::bitset<32>(i >> 32) << "]" << std::endl;
}
inline void DumpLog(std::stringstream* ss, std::string file_name) {
std::ofstream log_file;
log_file.open(file_name);
log_file << ss->str();
log_file.close();
}
#ifdef _MSC_VER
# include <intrin.h>
# define __builtin_popcount _mm_popcnt_u32
# define __builtin_popcountll _mm_popcnt_u64
#endif
inline int count_bits(int32_t v) {
return static_cast<int>(__builtin_popcount(v));
}
inline int count_bits(int64_t v) {
return static_cast<int>(__builtin_popcountll(v));
}