This commit is contained in:
2016-11-25 19:31:00 -08:00
commit 001a46260a
73 changed files with 8363 additions and 0 deletions

15
lab3/CMakeLists.txt Normal file
View File

@@ -0,0 +1,15 @@
cmake_minimum_required(VERSION 3.5.1)
project(Lab3)
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
file(GLOB SOURCES "*.cpp")
file(GLOB HEADERS "*.h" "*.hpp")
set(SOURCE_FILES ${HEADERS} ${SOURCES} )
add_executable(Lab3 ${SOURCE_FILES})

BIN
lab3/CS417_Lab3.pdf Normal file

Binary file not shown.

View File

@@ -0,0 +1,169 @@
#pragma once
#include "search_function.h"
class differential_evolution : public search_function {
public:
differential_evolution(function f) : search_function(f) {};
double search(int permutations, int dimensionality) {
// Set up random start
std::vector<std::vector<double>> population = generate_population(50, dimensionality);
for (int g = 0; g < maximum_generation_number; g++) {
for (int i = 0; i < population.size(); i++) {
// Create the U, temp vector to hold values
std::vector<double> u(dimensionality, 0);
// select a random dimension
int j_rand = rand() % dimensionality;
for (int j = j_rand; j < dimensionality; j++){
// Accept changes if rng returns < 0.9
if (randomMT() * 1.0 / RAND_MAX < 0.9)
u.at(j) = check_bounds(compute_with_strategy(&population, j, i));
else
u.at(j) = population.at(i).at(j);
}
// If the new population has a better fitness, replace it
if (func.compute(population.at(i)) > func.compute(u))
population.at(i) = u;
}
}
// Generation is done, return the best value from the population
std::sort(population.begin(), population.end(), [this](std::vector<double> a, std::vector<double> b){
return this->func.compute(a) < this->func.compute(b);
});
return func.compute(population[0]);
};
void set_strategy(int strategy){
this->strategy = strategy;
}
private:
// G
int maximum_generation_number = 30;
// Tuning variable
double tuning_variable_f = 0.8;
double tuning_variable_lambda = 1.0;
int strategy = 0;
// Compute using different strategies
double compute_with_strategy(std::vector<std::vector<double>> *population, int j, int i){
// Setup and find the best solution in the population that was passed in
std::vector<double> best_solution;
double best_fitness = 999999999999;
for (auto p: *population){
double val = func.compute(p);
if (val < best_fitness){
best_fitness = val;
best_solution = p;
}
}
// Depending on the strategy, determine the new solution at J
switch(strategy){
case 1: {
std::vector<int> r = distinct_indices(2, population[0].size());
return best_solution[j] + tuning_variable_f * (population->at(r[0]).at(j) - population->at(r[1]).at(j));
}
case 2: {
std::vector<int> r = distinct_indices(3, population[0].size());
return population->at(r[0]).at(j) + tuning_variable_f * (population->at(r[1]).at(j) - population->at(r[2]).at(j));
}
case 3:{
std::vector<int> r = distinct_indices(2, population[0].size());
return population->at(i).at(j) + tuning_variable_lambda * (best_solution.at(j) - population->at(i).at(j)) + tuning_variable_f * (population->at(r[0]).at(j) - population->at(r[1]).at(j));
}
case 4:{
std::vector<int> r = distinct_indices(4, population[0].size());
return best_solution.at(j) + tuning_variable_f * (population->at(r[0]).at(j) + population->at(r[1]).at(j) - population->at(r[2]).at(j) - population->at(r[3]).at(j));
}
case 5:{
std::vector<int> r = distinct_indices(5, population[0].size());
return population->at(r[4]).at(j) + tuning_variable_f * (population->at(r[0]).at(j) + population->at(r[1]).at(j) - population->at(r[2]).at(j) - population->at(r[3]).at(j));
}
case 6:{
std::vector<int> r = distinct_indices(2, population[0].size());
return best_solution.at(j) + tuning_variable_f * (population->at(r[0]).at(j) - population->at(r[1]).at(j));
}
case 7:{
std::vector<int> r = distinct_indices(3, population[0].size());
return population->at(r[0]).at(j) + tuning_variable_f * (population->at(r[1]).at(j) - population->at(r[2]).at(j));
}
case 8:{
std::vector<int> r = distinct_indices(2, population[0].size());
return population->at(i).at(j) + tuning_variable_lambda * (best_solution.at(j) - population->at(i).at(j)) + tuning_variable_f * (population->at(r[0]).at(j) - population->at(r[1]).at(j));
}
case 9:{
std::vector<int> r = distinct_indices(4, population[0].size());
return best_solution.at(j) + tuning_variable_f * (population->at(r[0]).at(j) + population->at(r[1]).at(j) - population->at(r[2]).at(j) - population->at(r[3]).at(j));
}
case 10:{
std::vector<int> r = distinct_indices(5, population[0].size());
return population->at(r[4]).at(j) + tuning_variable_f * (population->at(r[0]).at(j) + population->at(r[1]).at(j) - population->at(r[2]).at(j) - population->at(r[3]).at(j));
}
}
}
std::vector<int> distinct_indices(int count, int max){
std::vector<int> indices;
for (int q = 0; q < count; q++) {
int val = 1 + (rand() % (max - 1));
while (std::count(indices.begin(), indices.end(), val) != 0)
val = randomMT() % max;
indices.push_back(val);
}
return indices;
}
};

319
lab3/functions.hpp Normal file
View File

@@ -0,0 +1,319 @@
std::vector<double> c = {0.806,0.517,0.1,0.908,0.965,0.669,0.524,0.902,0.351,0.876,0.462,
0.491,0.463,0.741,0.352,0.869,0.813,0.811,0.0828,0.964,0.789,0.360,0.369,
0.992,0.332,0.817,0.632,0.883,0.608,0.326};
double a[][10] =
{
{9.681,0.667,4.783,9.095,3.517,9.325,6.544,0.211,5.122,2.02},
{9.4,2.041,3.788,7.931,2.882,2.672,3.568,1.284,7.033,7.374},
{8.025,9.152,5.114,7.621,4.564,4.711,2.996,6.126,0.734,4.982},
{2.196,0.415,5.649,6.979,9.510,9.166,6.304,6.054,9.377,1.426},
{8.074,8.777,3.467,1.863,6.708,6.349,4.534,0.276,7.633,1.567},
{7.650,5.658,0.720,2.764,3.278,5.283,7.474,6.274,1.409,8.208},
{1.256,3.605,8.623,6.905,4.584,8.133,6.071,6.888,4.187,5.448},
{8.314,2.261,4.24,1.781,4.124,0.932,8.129,8.658,1.208,5.762},
{0.226,8.858,1.42,0.954,1.622,4.698,6.228,9.096,0.972,7.637},
{7.305,2.228,1.242,5.928,9.133,1.826,4.06,5.204,8.713,8.247},
{0.652,7.027,0.508,4.876,8.807,4.632,5.808,6.937,3.291,7.016},
{2.699,3.516,5.847,4.119,4.461,7.496,8.817,0.69,6.593,9.789},
{8.327,3.897,2.017,9.57,9.825,1.15,1.395,3.885,6.354,0.109},
{2.132,7.006,7.136,2.641,1.882,5.943,7.273,7.691,2.88,0.564},
{4.707,5.579,4.08,0.581,9.698,8.542,8.077,8.515,9.231,4.67},
{8.304,7.559,8.567,0.322,7.128,8.392,1.472,8.524,2.277,7.826},
{8.632,4.409,4.832,5.768,7.05,6.715,1.711,4.323,4.405,4.591},
{4.887,9.112,0.17,8.967,9.693,9.867,7.508,7.77,8.382,6.74},
{2.44,6.686,4.299,1.007,7.008,1.427,9.398,8.48,9.95,1.675},
{6.306,8.583,6.084,1.138,4.350,3.134,7.853,6.061,7.457,2.258},
{0.652,2.343,1.37,0.821,1.31,1.063,0.689,8.819,8.833,9.07},
{5.558,1.272,5.756,9.857,2.279,2.764,1.284,1.677,1.244,1.234},
{3.352,7.549,9.817,9.437,8.687,4.167,2.57,6.54,0.228,0.027},
{8.798,0.88,2.37,0.168,1.701,3.68,1.231,2.39,2.499,0.064},
{1.46,8.057,1.337,7.217,7.914,3.615,9.981,9.198,5.292,1.224},
{0.432,8.645,8.774,0.249,8.081,7.461,4.416,0.652,4.002,4.644},
{0.679,2.8,5.523,3.049,2.968,7.225,6.73,4.199,9.614,9.229},
{4.263,1.074,7.286,5.599,8.291,5.2,9.214,8.272,4.398,4.506},
{9.496,4.83,3.15,8.27,5.079,1.231,5.731,9.494,1.883,9.732},
{4.138,2.562,2.532,9.661,5.611,5.5,6.886,2.341,9.699,6.5}
};
double schwefel(std::vector<double> input){
int upper_bound = 512;
int lower_bound = -512;
double sum = 0;
for (int i = 0; i < input.size(); i++){
sum += (-input[i]) * std::sin(std::sqrt(std::abs(input[i])));
}
return sum;
}
double first_de_jong(std::vector<double> input){
int upper_bound = 100;
int lower_bound = -100;
double sum = 0;
for (int i = 0; i < input.size(); i++){
sum += std::pow(input[i], 2);
}
return sum;
}
double rosenbrock(std::vector<double> input){
int upper_bound = 100;
int lower_bound = -100;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++){
sum += 100 * std::pow((std::pow(input[i], 2) - input[i + 1]), 2) + std::pow((1 - input[i]), 2);
}
return sum;
}
double rastrigin(std::vector<double> input){
int upper_bound = 30;
int lower_bound = -30;
double sum = 0;
for (int i = 0; i < input.size(); i++){
sum += std::pow(input[i], 2) - 10 * std::cos(2 * M_PI * input[i]);
}
sum *= 2 * input.size();
return sum;
}
double griewangk(std::vector<double> input){
int upper_bound = 500;
int lower_bound = -500;
double sum = 0;
for (int i = 0; i < input.size(); i++){
sum += std::pow(input[i], 2) / 4000;
}
double product = 1;
for (int i = 0; i < input.size(); i++){
product *= std::cos(input[i] / sqrt(i + 1));
}
return 1 + sum - product;
}
double sine_envelope_sine_wave(std::vector<double> input){
int upper_bound = 30;
int lower_bound = -30;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++){
sum += 0.5 + (std::pow(std::sin(std::pow(input[i], 2) + std::pow(input[i + 1], 2) - 0.5), 2)) /
(1 + 0.001 * (std::pow(input[i], 2) + std::pow(input[i + 1], 2)));
}
return sum;
}
double stretched_v_sine_wave(std::vector<double> input){
int upper_bound = 30;
int lower_bound = -30;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++){
sum += std::pow(std::pow(input[i], 2) + std::pow(input[i + 1], 2), 1.0 / 4) *
std::pow(std::sin(50 * std::pow(std::pow(input[i], 2) + std::pow(input[i + 1], 2), 1.0 / 10)), 2) + 1;
}
return sum;
}
double ackleys_one(std::vector<double> input){
int upper_bound = 32;
int lower_bound = -32;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++){
sum += (1.0 / pow(M_E, 0.2)) *
std::sqrt(std::pow(input[i], 2) + std::pow(input[i + 1], 2)) +
3 * std::cos(2 * input[i]) +
std::sin(2 * input[i + 1]);
}
return sum;
}
double ackleys_two(std::vector<double> input){
int upper_bound = 32;
int lower_bound = -32;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++){
sum += 20 + M_E -
(20 / (std::pow(M_E, 0.2) * std::sqrt(((std::pow(input[i], 2) + std::pow(input[i+1], 2) + 1) / 2)))) -
std::pow(M_E, 0.5 * std::cos(2 * M_PI * input[i]) + cos(2 * M_PI * input[i + 1]));
}
return sum;
}
double egg_holder(std::vector<double> input){
int upper_bound = 500;
int lower_bound = -500;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++) {
sum += -input[i] * std::sin(std::sqrt(abs(input[i] - input[i + 1] - 47))) -
(input[i + 1] + 47) * std::sin(std::sqrt(std::abs(input[i + 1] + 47 + input[i] / 2)));
}
return sum;
}
double rana(std::vector<double> input){
int upper_bound = 500;
int lower_bound = -500;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++) {
sum += input[i] * std::sin(std::sqrt(std::abs(input[i + 1] - input[i] + 1))) *
std::cos(std::sqrt(std::abs(input[i + 1] + input[i] + 1))) +
(input[i + 1] + 1) *
std::cos(std::sqrt(std::abs(input[i + 1] - input[i] + 1))) *
std::sin(std::sqrt(std::abs(input[i + 1] + input[i] + 1)));
}
return sum;
}
double pathological(std::vector<double> input){
int upper_bound = 100;
int lower_bound = -100;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++) {
sum += 0.5 +
(std::pow(std::sin(std::sqrt(100 * std::pow(input[i], 2) + std::pow(input[i + 1], 2))), 2) - 0.5) /
(1 + 0.001 * std::pow(std::pow(input[i], 2) - 2 * input[i] * input[i + 1] + std::pow(input[i + 1], 2), 2));
}
return sum;
}
double michalewicz(std::vector<double> input){
int upper_bound = M_PI;
int lower_bound = 0;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++) {
sum += std::sin(input[i]) * std::pow(std::sin(i * std::pow(input[i], 2) / M_PI), 20);
}
return -sum;
}
double masters_cosine_wave(std::vector<double> input){
int upper_bound = 30;
int lower_bound = -30;
double sum = 0;
for (int i = 0; i < input.size() - 1; i++) {
sum += std::pow(M_E, -(1/8) * (std::pow(input[i], 2) + std::pow(input[i + 1], 2) + 0.5 * input[i + 1] * input[i])) *
std::cos(4 * std::sqrt(std::pow(input[i], 2) + std::pow(input[i + 1], 2) + 0.5 * input[i] * input[i + 1]));
}
return -sum;
}
double shekels_foxholes(std::vector<double> input){
int upper_bound = 10;
int lower_bound = 0;
double sum = 0;
for (int i = 0; i < c.size() - 1; i++) {
double bottom_sum = 0;
for (int q = 0; q < input.size(); q++){
bottom_sum = std::pow(input.at(q) - a[i][q], 2);
}
sum += 1 / (bottom_sum + c[i]);
}
return -sum;
}
double set_within(double val, double prior_upper, double prior_lower, double after_upper, double after_lower){
return ((after_upper - after_lower) * (val - prior_lower) / (prior_upper - prior_lower)) + after_lower;
}
struct function {
double (*function_pointer)(std::vector<double>);
double range = 0;
double upper_bound = 0;
double lower_bound = 0;
timer t;
function(){};
function(double (*func)(std::vector<double>), double upper_bound, double lower_bound) {
function_pointer = func;
this->upper_bound = upper_bound;
this->lower_bound = lower_bound;
}
double compute(std::vector<double> input) {
for (auto v: input) {
if (v <= lower_bound && v >= upper_bound) {
std::cout << "Function exceeded bounds";
return 0;
}
}
double res = function_pointer(input);
return res;
};
};

167
lab3/genetic_algorithm.hpp Normal file
View File

@@ -0,0 +1,167 @@
#pragma once
#include "search_function.h"
class genetic_algorithm : public search_function {
public:
genetic_algorithm(function f) : search_function(f) {};
double search(int permutations, int dimensionality) {
elitism = elitism_rate * number_of_solutions;
// Set up random start population
std::vector<std::vector<double>> population;
for (int p = 0; p < number_of_solutions; p++) {
std::vector<double> tmp;
for (int i = 0; i < dimensionality; i++){
tmp.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
}
population.push_back(tmp);
}
for (int i = 0; i < max_iterations; i++){
// Setup the random new population
std::vector<std::vector<double>> new_population;
for (int p = 0; p < number_of_solutions; p++) {
std::vector<double> tmp;
for (int i = 0; i < dimensionality; i++){
tmp.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
}
new_population.push_back(tmp);
}
for (int s = 0; s < number_of_solutions; s += 2){
auto p1p2 = select(&population);
crossover(&std::get<0>(p1p2), &std::get<1>(p1p2));
mutate(&std::get<0>(p1p2));
mutate(&std::get<1>(p1p2));
}
reduce(&population, &new_population);
for (auto q: population){
double val = func.compute(q);
if (val < best_fitness)
best_fitness = val;
}
}
return best_fitness;
};
private:
double crossover_rate = 0.90;
double elitism_rate = 0.2;
int elitism = 10;
double mutation_rate = 0.008;
double mutation_range = 0.1;
double muration_precision = 3.5;
double best_fitness = 99999999999999999;
int number_of_solutions = 50;
int max_iterations = 100;
double get_fitness(std::vector<std::vector<double>> *population){
double fitness_sum = 0;
for (auto p: *population){
double fitness = func.compute(p);
if (fitness >= 0)
fitness_sum += 1 / (1 + fitness);
else
fitness_sum += 1 + abs(fitness);
}
return fitness_sum;
}
int select_parent(std::vector<std::vector<double>> *population){
double r = fmod(randomMT(), total_fitness(population));
int s = 0;
while (s < population->size()-1 && (r - func.compute(population->at(s)) > 0)) {
r -= func.compute(population->at(s++));
}
return s;
}
std::tuple<std::vector<double>, std::vector<double>> select(std::vector<std::vector<double>> *population){
auto p1 = population->at(select_parent(population));
auto p2 = population->at(select_parent(population));
return std::make_tuple(p1, p2);
};
void mutate(std::vector<double> *solution){
for (auto i: *solution){
if ((randomMT() * 1.0 / UINT32_MAX) < mutation_rate){
i += ((randomMT() * 1.0 / UINT32_MAX) * 2 - 1) * (func.upper_bound - func.lower_bound) *
mutation_range * pow(2, (-1 * (randomMT() * 1.0 / UINT32_MAX) * muration_precision));
}
}
}
void crossover(std::vector<double> *parent1, std::vector<double> *parent2){
if ((randomMT() * 1.0 / UINT32_MAX) < crossover_rate){
int d = randomMT() % (parent1->size() - 1) + 1;
int dim = parent1->size();
std::vector<double> temp;
temp.insert(temp.begin(), parent1->begin(), parent1->begin() + d);
parent1->erase(parent1->begin(), parent1->begin() + d);
parent1->insert(parent1->end(), parent2->begin() + dim - d, parent2->end());
parent2->erase(parent2->begin() + dim - d, parent2->end());
parent2->insert(parent2->end(), temp.begin(), temp.end());
}
}
void reduce(std::vector<std::vector<double>> *population, std::vector<std::vector<double>> *new_population){
std::sort(population->begin(), population->end(), [this](std::vector<double> a, std::vector<double> b){
return this->func.compute(a) < this->func.compute(b);
});
std::sort(new_population->begin(), new_population->end(), [this](std::vector<double> a, std::vector<double> b){
return this->func.compute(a) < this->func.compute(b);
});
for (int s = 0; s < elitism; s++) {
new_population->at(elitism + 1 - s) = population->at(s);
}
*population = *new_population;
}
double total_fitness(std::vector<std::vector<double>> *population){
double val = 0;
for (auto i: *population)
val += func.compute(i);
return val;
}
};

View File

@@ -0,0 +1,65 @@
#pragma once
#include "search_function.h"
class iterative_local_search : public search_function {
public:
iterative_local_search(function f) : search_function(f) {};
double search(int permutations, int dimensionality) {
// Set up random start
std::vector<double> global_best_solution;
for (int i = 0; i < dimensionality; i++) {
global_best_solution.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
}
// 30 iteration max
int iteration_max = 30;
for (int i = 0; i < iteration_max; i++){
// Random new solution
std::vector<double> best_solution;
for (int i = 0; i < dimensionality; i++) {
best_solution.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
}
std::vector<double> temp_solution = best_solution;
// While a better solution is still being found
bool better_solution_found = true;
while (better_solution_found) {
better_solution_found = false;
double delta = 0.11;
temp_solution = best_solution;
std::vector<double> new_solution(dimensionality);
// Set up the new solution
for (int i = 0; i < dimensionality; i++) {
temp_solution[i] += delta;
new_solution[i] = best_solution[i] - delta * (func.compute(temp_solution) - func.compute(best_solution));
temp_solution[i] = best_solution[i];
// temp[i] - delta * new with delta, and the old without
}
// test it
if (func.compute(new_solution) < func.compute(best_solution)) {
best_solution = new_solution;
better_solution_found = true;
}
}
// Check to see if we found a better global solution
if (func.compute(best_solution) < func.compute(global_best_solution)){
global_best_solution = best_solution;
}
}
};
};

53
lab3/local_search.hpp Normal file
View File

@@ -0,0 +1,53 @@
#pragma once
#include "search_function.h"
class local_search : public search_function {
public:
local_search(function f) : search_function(f) {
};
double search(int permutations, int dimensionality) {
// Set up the initial soution
std::vector<double> best_solution;
for (int i = 0; i < dimensionality; i++) {
best_solution.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
}
std::vector<double> temp_solution = best_solution;
// While a better solution is being found
bool better_solution_found = true;
while (better_solution_found) {
better_solution_found = false;
double delta = 0.11;
temp_solution = best_solution;
std::vector<double> new_solution(dimensionality);
for (int i = 0; i < dimensionality; i++) {
temp_solution[i] += delta;
new_solution[i] = best_solution[i] - delta * (func.compute(temp_solution) - func.compute(best_solution));
temp_solution[i] = best_solution[i];
// temp[i] - delta * new with delta, and the old without
}
// Check to see if we found a better solution
if (func.compute(new_solution) < func.compute(best_solution)) {
best_solution = new_solution;
better_solution_found = true;
}
}
return func.compute(best_solution);
};
};

124
lab3/main.cpp Normal file
View File

@@ -0,0 +1,124 @@
#include <iostream>
#include <vector>
#include <cmath>
#include <map>
#include <chrono>
#include <cstring>
#include "twister.c"
#include "util.hpp"
#include "functions.hpp"
#include "random_walk.hpp"
#include "local_search.hpp"
#include "iterative_local_search.hpp"
#include "differential_evolution.hpp"
#include "genetic_algorithm.hpp"
#include "particle_search.hpp"
int main(int argc, char* args[]) {
std::map<int, function> function_lookup;
function_lookup.emplace(std::make_pair(0, function(&schwefel, 512, -512)));
function_lookup.emplace(std::make_pair(1, function(&first_de_jong, 100, -100)));
function_lookup.emplace(std::make_pair(2, function(&rosenbrock, 100, -100)));
function_lookup.emplace(std::make_pair(3, function(&rastrigin, 30, -30)));
function_lookup.emplace(std::make_pair(4, function(&griewangk, 500, -500)));
function_lookup.emplace(std::make_pair(5, function(&sine_envelope_sine_wave, 30, -30)));
function_lookup.emplace(std::make_pair(6, function(&stretched_v_sine_wave, 30, -30)));
function_lookup.emplace(std::make_pair(7, function(&ackleys_one, 32, -32)));
function_lookup.emplace(std::make_pair(8, function(&ackleys_two, 32, -32)));
function_lookup.emplace(std::make_pair(9, function(&egg_holder, 500, -500)));
function_lookup.emplace(std::make_pair(10, function(&rana, 500, -500)));
function_lookup.emplace(std::make_pair(11, function(&pathological, 100, -100)));
function_lookup.emplace(std::make_pair(12, function(&michalewicz, M_PI, 0)));
function_lookup.emplace(std::make_pair(13, function(&masters_cosine_wave, 30, -30)));
function_lookup.emplace(std::make_pair(14, function(&shekels_foxholes, 10, 0)));
function f;
int dimensionality = 0;
double seed = 0;
int search_function = 0;
// Get the command line args
if (argc == 1){
char arg_str[200];
std::cin.get(arg_str, 200);
char t = ' ';
f = function_lookup[atoi(strtok(arg_str, &t))];
dimensionality = atoi(strtok(NULL, &t));
seed = atoi(strtok(NULL, &t));
search_function = atoi(strtok(NULL, &t));
} else {
f = function_lookup[atoi(args[1])];
dimensionality = atoi(args[2]);
seed = atoi(args[3]);
search_function = atoi(args[4]);
}
// srand(time(nullptr));
// f = function_lookup[10];
// dimensionality = 20;
// seed = rand();
// search_function = 2;
// Set up the search functions
seedMT(seed);
random_walk r_w(f);
local_search l_s(f);
iterative_local_search it_s(f);
differential_evolution dif_ev(f);
genetic_algorithm gen_alg(f);
particle_search prtcl_src(f);
// return the results of the search
if (search_function == 0)
std::cout << r_w.search(1, dimensionality) << std::endl;
else if (search_function == 1)
std::cout << l_s.search(1, dimensionality) << std::endl;
else if (search_function == 2)
std::cout << it_s.search(1, dimensionality) << std::endl;
else if (search_function == 3)
std::cout << dif_ev.search(1, dimensionality) << std::endl;
else if (search_function == 4)
std::cout << gen_alg.search(1, dimensionality) << std::endl;
else if (search_function == 5)
std::cout << prtcl_src.search(1, dimensionality) << std::endl;
//std::cout << r_w.search(1, dimensionality) << std::endl;
//std::cout << l_s.search(1, dimensionality) << std::endl;
//std::cout << it_s.search(1, dimensionality) << std::endl;
//
// std::cout << "=====================" << std::endl;
//
// dif_ev.set_strategy(1);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(2);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(3);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(4);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(5);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(6);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(7);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(8);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(9);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
// dif_ev.set_strategy(10);
// std::cout << dif_ev.search(1, dimensionality) << std::endl;
//
// std::cout << "=====================" << std::endl;
// std::cout << gen_alg.search(1, dimensionality) << std::endl;
//
// std::cout << "=====================" << std::endl;
// std::cout << prtcl_src.search(1, dimensionality) << std::endl;
return 0;
}

144
lab3/particle_search.hpp Normal file
View File

@@ -0,0 +1,144 @@
#pragma once
#include "search_function.h"
struct particle {
// Personal best
double pb_fitness = 999999999999999;
std::vector<double> pb_solution;
// Current solution
double fitness = 9999999999;
std::vector<double> solution;
std::vector<double> velocity;
double v_max = 4.0;
double c1 = 0.2;
double c2 = 0.2;
double weight = 0.9;
int dimensionality;
std::vector<double> *gb_solution;
double *gb_fitness;
function *func;
particle(int dimensionality, std::vector<double> *gb_solution, double *gb_fitness, function *func) : dimensionality(dimensionality){
this->gb_solution = gb_solution;
this->gb_fitness = gb_fitness;
this->func = func;
// Blank initial solution and assign it also to pb
pb_solution, solution = std::vector<double>(dimensionality, 0);
// Init the velocity
for (int i = 0; i < dimensionality; i++)
velocity.push_back(rand_between(-v_max/3, v_max/3));
}
void update_fitness(){
fitness = func->compute(solution);
if (fitness < pb_fitness){
pb_solution = solution;
pb_fitness = fitness;
}
if (fitness < *gb_fitness){
*gb_solution = solution;
*gb_fitness = fitness;
}
}
void update_velocity(){
for (int d = 0; d < dimensionality; d++){
velocity.at(d) = weight * velocity.at(d) + c1 * rand_between(0, 1) * (pb_solution.at(d) - solution.at(d)) +
c2 * rand_between(0, 1) * (gb_solution->at(d) - solution.at(d));
if (velocity.at(d) > v_max)
velocity.at(d) = v_max;
else if (velocity.at(d) < -v_max)
velocity.at(d) = -v_max;
solution.at(d) += velocity.at(d);
if (solution.at(d) < func->lower_bound)
solution.at(d) = func->lower_bound;
else if (solution.at(d) > func->upper_bound)
solution.at(d) = func->upper_bound;
}
}
};
class particle_search : public search_function {
public:
particle_search(function f) : search_function(f) {};
double search(int permutations, int dimensionality) {
for (int i = 0; i < number_of_particles; i++){
particle p(dimensionality, &gb_solution, &gb_fitness, &func);
p.solution = generate_solution(dimensionality);
p.update_fitness();
particles.push_back(p);
}
for (int i = 0; i < max_iterations; i++){
for (int p = 0; p < particles.size(); p++){
particles.at(p).update_fitness();
particles.at(p).update_velocity();
}
}
return gb_fitness;
};
private:
// The global best solution and fitness
double gb_fitness = 99999999999999;
std::vector<double> gb_solution;
int number_of_particles = 100;
std::vector<particle> particles;
int max_iterations = 100;
};

41
lab3/random_walk.hpp Normal file
View File

@@ -0,0 +1,41 @@
#pragma once
#include "search_function.h"
#include <algorithm>
class random_walk : public search_function {
public:
random_walk(function f) : search_function(f) {
}
double search(int permutations, int dimensionality) {
timer t;
t.start();
std::vector<double> r;
for (int i = 0; i < permutations; i++){
std::vector<double> dimension_vals;
for (int i = 0; i < dimensionality; i++) {
auto val = fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound;
dimension_vals.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
}
r.push_back(func.compute(dimension_vals));
}
t.end();
std::sort(r.begin(), r.end(), std::less<double>());
return r[0];
}
};

Binary file not shown.

BIN
lab3/results/Data.ods Normal file

Binary file not shown.

6
lab3/results/README Normal file
View File

@@ -0,0 +1,6 @@
The optimization functions can be either ran with the python script "run.py"
which will run all 3 search methods with all 15 search functions.
Or you can call the executable directly from the command line. Eg.
./Lab3 <0-14> <dimensionality> <seed> <1-5>

55
lab3/results/run.py Normal file
View File

@@ -0,0 +1,55 @@
from subprocess import check_output
import subprocess
import random
import matplotlib.pyplot as plt
import time
random.seed()
loc = "../build/Lab3"
f = open('out','w')
f.write("Timer values")
for function in range(3, 5):
print("Method: " + str(function))
for q in range(0, 15):
print("Function: " + str(q))
f.write(str(q) + "\n")
start = time.time()
subprocess.call([
loc,
str(q),
str(20),
str(random.randint(0, 2147483646)),
str(function)
])
end = time.time()
f.write(str(end-start) + "\n")
f.close()

BIN
lab3/results/writeup.pdf Normal file

Binary file not shown.

243
lab3/results/writeup.tex Normal file
View File

@@ -0,0 +1,243 @@
\documentclass[paper=a4, fontsize=11pt]{scrartcl}
\usepackage[T1]{fontenc}
\usepackage{fourier}
\usepackage[english]{babel}
\usepackage[protrusion=true,expansion=true]{microtype}
\usepackage{amsmath,amsfonts,amsthm}
\usepackage[pdftex]{graphicx}
\usepackage{url}
\usepackage{sectsty}
\usepackage{rotating}
\allsectionsfont{\centering \normalfont\scshape}
\usepackage{fancyhdr}
\pagestyle{fancyplain}
\fancyhead{}
\fancyfoot[L]{}
\fancyfoot[C]{}
\fancyfoot[R]{\thepage}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\setlength{\headheight}{13.6pt}
\numberwithin{equation}{section}
\numberwithin{figure}{section}
\numberwithin{table}{section}
\newcommand{\horrule}[1]{\rule{\linewidth}{#1}}
\title{
%\vspace{-1in}
\usefont{OT1}{bch}{b}{n}
\normalfont \normalsize \textsc{Central Washington University of the Computer Science Department} \\ [25pt]
\horrule{0.5pt} \\[0.4cm]
\huge Project 3 \\
\horrule{2pt} \\[0.5cm]
}
\author{\normalsize Mitchell Hansen \\[-6pt]}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\maketitle
\section{Introduction}
For this lab we took our 15 optimization functions and ran them through
3 new methods of determining the global minimum. The functions being:
Differential evolution (DE) which uses a population approach with strategies
for computing new solutions, Genetic evolution (GE) which takes a genetic approach
with genes, crossover and mutation, and Particle swarm (PS) which simulates
swarm movement to find the global minimum.
\section{Methods}
Our rewrite in the previous lab allowed us to just extend three more
classes from the search function class we had implemented. These
extended classes were then called with a python script and the output
printed to the console where I was able to analyze the data. Each test
was ran 15 times using the python script and the data stored to a file.
Upon referencing multiple online sources, we also decided to use a different
method of initializing particle velocity vectors and velocity maximums. Settling
with velocityMaxium = 4.0, and the initial velocities being created between
velocityMaxium \textbackslash 3, and -velocityMaximum \textbackslash 3.
These values seemed to produce accurate results.
\section{Analysis}
This lab produced some interesting results regarding the performance of the
new functions. Overall, the three new functions (PS, GE, DE) were more
efficient and accurate than the previous 3 functions (Random Walk, Local Search,
Iterative Local Search), but there were some discrepancies with some
functions. These discrepancies showed themselves as completely inaccurate
results on some functions, while the method would then produce extremely accurate
results on other functions. For example, GE produced a 23185.53 average for DeJong,
the actual minimum being 0. Yet for the Michalewicz function GE produced an average
that was much more competitive to the the other functions.
Another interesting point on the performance of these functions can be seen when comparing
them to the values received from the previous search functions we used. Rosenbrocks saddle
is a great example of the performance difference, where Iterative Local Search's best
value was in the range of 2.51E+10. DE on the other hand was able to produce a minimum
value of 19 and PS a value of 37, massive increases in accuracy. Interestingly enough,
for rosenbrocks saddle GE produced a value similar to Iterative local search, a minimum
of 3.21E+09.
More differences between the three functions can be again found with the Rastrigin function.
ILS was able to produce a value of 83731.6, GE produced 65280, but PS and DE both had
massively more accurate results of: PS -> -6902.05, and DE -> -8000 which we believe is the
actual minimum of the Rastrigin function.
There are other examples of these new functions attaining greater accuracy than the previous
functions did, but that information can easily be seen in the results table in figure 5.1. One last point we
want to cover is the actual time performance of these algorithms. Previously Local Search and
Iterative Local Search both took an excessive amount of time to compute on solutions with
larger dimensions (20 +). Based on previous performance, it was estimated that the Griegwangk
function running with 30 dimensions would run for 8 hours using Iterative Local Search. To contrast
this, the complete computation time taken for the 15 functions, at 15 iterations, using all 3
search functions completed faster than one iteration of 20 dimensional Iterative Local Search
with the Griewagnk function.
\section{Conclusion}
Coming away from this lab we saw that these new functions have the ability to not only
improve the accuracy of our results, but also improve the running time of the search.
With this improved running time we could run more trials and get even more accurate results
than the ones that we are getting currently.
There were some difficulties and issues when running the tests for this lab. The first being
our inability to completely verify our results. We mentioned some discrepancies earlier
where GE produced values that were wildly inaccurate for some functions. It is unknown to
us whether this is simply a product of the strengths and weaknesses of this specific search
method, or if there is something wrong with out implementation. Another issue is that of the
Shekels Foxholes function. For Particle Swarm and Genetic Evolution there was no deviation from
the single value that they returned. Either the algorithm is able to deterministic
produce the apparent global minimum, or there is something wrong with the function.
\begin{figure}
\section{Results}
\caption{Computation comparison of DE, GA and PSO}
\hskip+4.0cm
\rotatebox{90.0}{
\scalebox{0.7}{
\small \centering
\label{Tab1d}
\begin{tabular}{c|lllll|lllll|lllll}
\noalign{\smallskip}\hline\noalign{\smallskip}
Problem & \multicolumn{5}{c}{DE}& \multicolumn{5}{|c|}{GA}
& \multicolumn{5}{c}{PSO} \\
\noalign{\smallskip}\hline\noalign{\smallskip}
& Avg & Median & Range & SD & T(s) & Avg & Median & Range & SD & T(s) & Avg & Median & Range & SD & T(s) \\ \noalign{\smallskip}\hline\noalign{\smallskip}
$f_1$ & -6112.33 & -6084.59 & 114.26 & 47.83 & 1.14 & -3276.12 & -3292.95 & 943.02 & 245.68 & 2.69 & -2871.98 & -2904.39 & 1194.77 & 322.06 & 0.12 \\
$f_2$ & 129.53 & 25.00 & 900.00 & 251.52 & 0.53 & 23185.53 & 22853.00 & 10310.00 & 3148.43 & 0.72 & 0.17 & 0.15 & 0.25 & 0.08 & 0.09 \\
$f_3$ & 26105.67 & 10019.00 & 168100.00 & 43662.88 & 0.78 & 5291234666.67 & 5017400000.00 & 5739020000.00 & 1539343402.74 & 0.68 & 421.98 & 200.19 & 1657.68 & 497.31 & 0.10 \\
$f_4$ & -7600.00 & -7960.00 & 2560.00 & 728.99 & 1.00 & 79752.00 & 81520.00 & 23240.00 & 8507.40 & 2.12 & -5206.62 & -5324.98 & 3479.78 & 1178.83 & 0.13 \\
$f_5$ & 0.00 & 0.00 & 0.00 & 0.00 & 1.08 & 145.86 & 150.55 & 51.89 & 17.68 & 2.31 & 9.17 & 8.93 & 5.88 & 1.95 & 0.13 \\
$f_6$ & 12.38 & 12.71 & 2.19 & 0.60 & 1.46 & 12.04 & 11.97 & 0.67 & 0.22 & 2.52 & 12.15 & 12.18 & 1.25 & 0.33 & 0.14 \\
$f_7$ & 19.06 & 19.01 & 0.62 & 0.16 & 1.67 & 36.69 & 36.60 & 5.76 & 1.54 & 4.20 & 20.55 & 20.45 & 2.63 & 0.68 & 0.18 \\
$f_8$ & 58.74 & 58.73 & 4.74 & 1.54 & 1.60 & 212.86 & 213.95 & 41.20 & 11.06 & 3.41 & -9.92 & -11.64 & 35.51 & 9.72 & 0.10 \\
$f_9$ & -83.30 & -80.69 & 21.87 & 6.99 & 2.09 & 276.38 & 276.83 & 14.65 & 4.35 & 4.10 & 251.53 & 288.37 & 173.05 & 64.83 & 0.14 \\
$f_{10}$ & -4959.12 & -4579.12 & 2896.23 & 966.10 & 3.02 & -4778.37 & -4822.17 & 978.82 & 327.79 & 4.72 & -4107.05 & -3830.50 & 2663.98 & 711.61 & 0.13 \\
$f_{11}$ & -8478.48 & -8821.20 & 5161.40 & 1330.20 & 3.56 & -3188.30 & -3181.83 & 1334.30 & 339.30 & 8.34 & -2899.33 & -2888.72 & 901.67 & 227.81 & 0.21 \\
$f_{12}$ & 0.00 & 0.00 & 0.00 & 0.00 & 1.48 & 8.00 & 8.01 & 0.69 & 0.17 & 2.70 & 7.02 & 7.08 & 1.30 & 0.37 & 0.15 \\
$f_{13}$ & -4.28 & -4.22 & 2.71 & 0.83 & 3.06 & -4.27 & -4.22 & 2.30 & 0.57 & 5.54 & -10.39 & -9.86 & 4.92 & 1.50 & 0.14 \\
$f_{14}$ & -18.99 & -19.00 & 0.04 & 0.01 & 1.47 & -10.88 & -10.53 & 3.70 & 1.00 & 3.65 & -16.07 & -16.15 & 5.22 & 1.59 & 0.14 \\
$f_{15}$ & -21.91 & -23.03 & 8.39 & 2.95 & 6.05 & -14.64 & -14.64 & 0.00 & 0.00 & 12.55 & -18.70 & -18.70 & 0.00 & 0.00 & 0.27 \\ \noalign{\smallskip}\hline\noalign{\smallskip}
& & & & & & & & & & & & & & & \\
\noalign{\smallskip}\hline\noalign{\smallskip} \multicolumn{16}{l}{\tiny $^1$ ThinkPad, 3.4GHz Intel Core i7 (3rd gen), 16 GB RAM}
\end{tabular}
}}
\end{figure}
\newpage
\section{Previous Results}
\hskip+2.5cm\scalebox{0.5}{
\rotatebox{90}{
\begin{tabular}{l || l | l | l | l | l | l | l | l | l | l | l | l | l | l | l}
\textbf{Iterative Local Search, 20 dimensions} \\
\hline \\
Function & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline \\
& -4549.4 & 0.0605 & 2.51E+10 & 83731.6 & 0.651206 & 14.7944 & 21.9681 & 279.695 & 321.001 & -1566.84 & -5338.46 & 9.21621 & -0.142619 & -17.715 & -11.8869 \\
& -6050.16 & 0.0605 & 4.55E+10 & 80745.8 & 0.268086 & 16.284 & 19.3337 & 343.725 & 313.969 & -1993.75 & -4148.75 & 9.46446 & -0.548652 & -18.1772 & -11.5925 \\
& -5398.23 & 0.0591995 & 5.06E+10 & 82401.3 & 0.032413 & 15.3526 & 23.9768 & 296.889 & 321.956 & -4633.19 & -4848.21 & 9.01646 & 0.218791 & -18.4282 & -11.5925 \\
& -5675.22 & 0.0605 & 4.42E+10 & 82591.3 & 0.00544314 & 14.7622 & 22.6234 & 331.276 & 323.228 & -4014.04 & -5436.05 & 9.26537 & 0.626347 & -18.2969 & -12.1455 \\
& -3976.37 & 0.0588747 & 3.25E+10 & 82036.8 & 0.0128344 & 13.9223 & 25.6647 & 325.015 & 329.982 & -1246.54 & -4823.87 & 9.12409 & -1.33997 & -17.3054 & -11.5925 \\
& -5082.38 & 0.0605 & 2.61E+10 & 87382.5 & 0.0201434 & 14.3422 & 21.3897 & 396.392 & 326.205 & -392.775 & -6280.62 & 9.13477 & -2.26781 & -18.1703 & -11.5925 \\
& -5891.86 & 0.0605 & 3.85E+10 & 89279.1 & 0.684922 & 15.2594 & 23.0754 & 329.302 & 326.381 & -337.14 & -3871.16 & 9.02972 & -0.0242582 & -18.4513 & -11.5925 \\
& -5003.93 & 0.0605 & 3.00E+10 & 85879 & 0.0151074 & 14.8268 & 19.9157 & 325.527 & 314.19 & -1212.15 & -4189.52 & 9.17302 & 0.0681864 & -18.2963 & -11.5925 \\
& -5418.57 & 0.0605 & 4.30E+10 & 82890.7 & 0.00544314 & 15.9129 & 20.2634 & 332.571 & 325.788 & -1548.21 & -5548.41 & 9.39065 & -0.906265 & -18.5396 & -11.5925 \\
& -5516.7 & 0.0599162 & 3.51E+10 & 82665.9 & 0.03008 & 16.1692 & 19.9074 & 388.651 & 327.169 & 923.714 & -563.104 & 9.20288 & -1.59829 & -18.1054 & -11.5925 \\
& -3937.92 & 0.0547374 & 3.35E+10 & 86354.3 & 0.0153078 & 15.3926 & 19.532 & 312.15 & 322.111 & -1598.94 & -4648.01 & 8.87789 & -1.49817 & -17.8506 & -11.5925 \\
& -4588.88 & 0.0605 & 3.51E+10 & 81101.4 & 0.00542657 & 15.7841 & 21.7808 & 357.263 & 330.684 & -1319.67 & -4261.9 & 9.33048 & -1.93719 & -18.2627 & -12.1791 \\
& -5082.97 & 0.0559769 & 2.42E+10 & 76218.4 & 0.00544314 & 15.1429 & 22.4065 & 346.209 & 324.783 & 1500.62 & -6032.9 & 9.18852 & -1.88437 & -18.2285 & -11.5925 \\
& -6070.01 & 0.0594556 & 3.21E+10 & 83486.2 & 0.0201913 & 14.966 & 19.342 & 393.145 & 324.682 & -404.273 & -5094.61 & 8.57302 & 0.126058 & -16.446 & -11.5925 \\
& -5043.31 & 0.0605 & 1.85E+10 & 82935.5 & 0.220955 & 14.0295 & 20.2134 & 316.233 & 325.996 & 2079.2 & -4572.43 & 9.70061 & -1.33897 & -18.2227 & -11.5925 \\
& -5161.34 & 0.0605 & 3.87E+10 & 85337.7 & 0.00541984 & 14.9478 & 19.5923 & 274.232 & 327.758 & -1727.17 & -4684.33 & 9.01989 & 0.290542 & -18.4796 & -12.1791 \\
& -4589.3 & 0.060484 & 3.08E+10 & 83765.5 & 0.01776 & 14.714 & 20.0449 & 314.196 & 325.896 & -1632.08 & -5179.06 & 8.52944 & -0.524841 & -18.3505 & -18.4163 \\
& -4332.6 & 0.0600202 & 6.77E+10 & 81498.7 & 0.0153003 & 16.5447 & 20.0096 & 314.165 & 307.423 & 1567.7 & -4461.73 & 9.43874 & -1.20997 & -18.3268 & -11.5925 \\
& -6267.41 & 0.0605 & 4.65E+10 & 81603.3 & 1.88596 & 16.1234 & 20.2482 & 316.52 & 317.494 & -5550.9 & -3693.39 & 9.4962 & 0.510028 & -18.1621 & -11.5925 \\
& -4588.98 & 0.0605 & 4.06E+10 & 85076.2 & 0.0225431 & 14.0527 & 20.8396 & 325.67 & 324.854 & -2326.43 & -5346.36 & 9.33666 & -1.32004 & -18.555 & -11.5925 \\
& -5477.69 & 0.0604347 & 5.13E+10 & 80799.5 & 0.00535823 & 14.7108 & 20.8015 & 261.241 & 319.17 & 485.619 & -4782.73 & 9.17792 & -1.22079 & -17.7232 & -18.1189 \\
& -6109.42 & 0.0472961 & 2.54E+10 & 83373.9 & 0.177322 & 15.6127 & 22.9987 & 286.368 & 321.812 & -2998.41 & -4456.01 & 8.6997 & -2.29998 & -18.4625 & -11.5925 \\
& -4885.09 & 0.0570039 & 4.39E+10 & 80163.4 & 0.255374 & 15.6927 & 23.8355 & 324.354 & 325.002 & -1578.78 & -4075.51 & 9.10547 & -0.131814 & -17.7901 & -11.5925 \\
& -4035.51 & 0.0600693 & 4.32E+10 & 81415.3 & 0.0152417 & 14.9575 & 19.5572 & 296.019 & 321.434 & 824.034 & -4011.91 & 9.31902 & -1.51993 & -17.8755 & -11.5924 \\
& -3917.22 & 0.0586818 & 4.16E+10 & 87878.4 & 0.0128369 & 14.4221 & 19.8007 & 375.301 & 300.768 & 1043.95 & -5037.25 & 9.57629 & -1.73324 & -18.2571 & -11.5925 \\
& -5754.04 & 0.0575467 & 2.76E+10 & 83622.3 & 0.272711 & 17.8043 & 20.3977 & 370.717 & 317.424 & -1133.68 & -4973.3 & 9.0252 & -1.10353 & -18.3087 & -11.5925 \\
& -4786.87 & 0.0605 & 5.54E+10 & 81190 & 0.0324796 & 14.4401 & 19.8204 & 358.965 & 296.103 & 692.475 & -4121.91 & 8.76355 & -0.860885 & -18.484 & -18.4163 \\
& -4510.47 & 0.0597792 & 3.24E+10 & 83530.5 & 4.0042 & 16.0272 & 20.4454 & 225.399 & 326.39 & -478.625 & -5370.33 & 9.32801 & -1.13941 & -18.4418 & -11.5729 \\
& -5398.26 & 0.0605 & 2.12E+10 & 85510.6 & 0.43707 & 14.8375 & 19.3774 & 332.986 & 327.903 & -985.672 & -316.499 & 8.94067 & 0.336942 & -17.9256 & -11.5925 \\
& -4253.69 & 0.0600716 & 3.11E+10 & 84551 & 0.0128391 & 15.5474 & 21.1043 & 361.928 & 322.473 & -2662.15 & -5159.38 & 7.88002 & -0.784451 & -18.5094 & -11.5924 \\
\hline \\
Avg. & -5045.1266666667 & 0.05921826 & 3.70E+10 & 8.33E+04 & 3.06E-01 & 1.52E+01 & 2.10E+01 & 3.27E+02 & 3.21E+02 & -1.07E+03 & -4.51E+03 & 9.11E+00 & -8.39E-01 & -1.81E+01 & -1.23E+01 \\
Med. & -5062.845 & 0.06045935 & 35130150000 & 83154.7 & 0.02016735 & 15.05445 & 20.33055 & 325.5985 & 323.955 & -1229.345 & -4733.53 & 9.17547 & -1.0048975 & -18.2599 & -11.5925 \\
Std. Dev. & 698.8094252189 & 0.0026900942 & 10975111347.1528 & 2619.8872400694 & 0.791604351 & 0.8539153929 & 1.6317417953 & 39.4394076324 & 8.0216805796 & 1808.4389363295 & 1268.809305736 & 0.3628603461 & 0.8562948838 & 0.4364346365 & 2.0376857083 \\
\hline \\
\end{tabular}
}
}
\small{Iterative Local Search Running Times in Seconds}
\hskip+2.5cm\scalebox{0.5}{
\begin{tabular}{l || l | l | l}
\textbf{Dimensions} & 10 & 20 & 30 \\
\hline \\
Function 1 & 5.355587244 & 21.5247523785 & 47.5882720947 \\
Function 2 & 0.4999251366 & 1.151144743 & 2.4649145603 \\
Function 3 & 0.0042607784 & 0.0112228394 & 0.0144929886 \\
Function 4 & 0.0058951378 & 0.0114533901 & 0.0161828995 \\
Function 5 & 150.1059572697 & 2928.3961615563 & N/A \\
Function 6 & 0.0101454258 & 0.0255510807 & 0.0222308636 \\
Function 7 & 32.4964332581 & 41.5021996498 & 168.8056237698 \\
Function 8 & 0.3526818752 & 1.6770370007 & 3.8826031685 \\
Function 9 & 0.0110986233 & 0.0125215054 & 0.0229070187 \\
Function 10 & 0.0899729729 & 0.2644715309 & 0.7342042923 \\
Function 11 & 30.093629837 & 165.0208876133 & 384.6772966385 \\
Function 12 & 297.458874464 & 25.3617525101 & 21.2174470425 \\
Function 13 & 0.0197796822 & 0.0436241627 & 0.0463643074 \\
Function 14 & 1.5726833344 & 7.7616007328 & 9.7854065895 \\
Function 15 & 6.6486163139 & 23.9164574146 & 32.7224471569 \\
\hline \\
\end{tabular}
} \\[0.5cm]
\end{document}

46
lab3/search_function.h Normal file
View File

@@ -0,0 +1,46 @@
#pragma once
class search_function {
public:
function func;
search_function(function f) : func(f) {
};
virtual double search(int permutations, int dimensionality) = 0;
protected:
std::vector<double> generate_solution(int dimensionality){
std::vector<double> tmp;
for (int i = 0; i < dimensionality; i++) {
tmp.push_back(fmod(randomMT(), (func.upper_bound * 2)) + func.lower_bound);
}
return tmp;
}
std::vector<std::vector<double>> generate_population(int dimensionality, int population_count){
std::vector<std::vector<double>> tmp;
for (int i = 0; i < dimensionality; i++) {
tmp.push_back(generate_solution(dimensionality));
}
return tmp;
}
double check_bounds(double input){
if (input > func.upper_bound)
return func.upper_bound;
else if (input < func.lower_bound)
return func.lower_bound;
else
return input;
}
};

181
lab3/twister.c Normal file
View File

@@ -0,0 +1,181 @@
// http://www.math.keio.ac.jp/~matumoto/ver980409.html
// This is the ``Mersenne Twister'' random number generator MT19937, which
// generates pseudorandom integers uniformly distributed in 0..(2^32 - 1)
// starting from any odd seed in 0..(2^32 - 1). This version is a recode
// by Shawn Cokus (Cokus@math.washington.edu) on March 8, 1998 of a version by
// Takuji Nishimura (who had suggestions from Topher Cooper and Marc Rieffel in
// July-August 1997).
//
// Effectiveness of the recoding (on Goedel2.math.washington.edu, a DEC Alpha
// running OSF/1) using GCC -O3 as a compiler: before recoding: 51.6 sec. to
// generate 300 million random numbers; after recoding: 24.0 sec. for the same
// (i.e., 46.5% of original time), so speed is now about 12.5 million random
// number generations per second on this machine.
//
// According to the URL <http://www.math.keio.ac.jp/~matumoto/emt.html>
// (and paraphrasing a bit in places), the Mersenne Twister is ``designed
// with consideration of the flaws of various existing generators,'' has
// a period of 2^19937 - 1, gives a sequence that is 623-dimensionally
// equidistributed, and ``has passed many stringent tests, including the
// die-hard test of G. Marsaglia and the load test of P. Hellekalek and
// S. Wegenkittl.'' It is efficient in memory usage (typically using 2506
// to 5012 bytes of static data, depending on data type sizes, and the code
// is quite short as well). It generates random numbers in batches of 624
// at a time, so the caching and pipelining of modern systems is exploited.
// It is also divide- and mod-free.
//
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Library General Public License as published by
// the Free Software Foundation (either version 2 of the License or, at your
// option, any later version). This library is distributed in the hope that
// it will be useful, but WITHOUT ANY WARRANTY, without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
// the GNU Library General Public License for more details. You should have
// received a copy of the GNU Library General Public License along with this
// library; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307, USA.
//
// The code as Shawn received it included the following notice:
//
// Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. When
// you use this, send an e-mail to <matumoto@math.keio.ac.jp> with
// an appropriate reference to your work.
//
// It would be nice to CC: <Cokus@math.washington.edu> when you write.
//
#include <stdio.h>
#include <stdlib.h>
//
// uint32 must be an unsigned integer type capable of holding at least 32
// bits; exactly 32 should be fastest, but 64 is better on an Alpha with
// GCC at -O3 optimization so try your options and see what's best for you
//
typedef unsigned long uint32;
#define N (624) // length of state vector
#define M (397) // a period parameter
#define K (0x9908B0DFU) // a magic constant
#define hiBit(u) ((u) & 0x80000000U) // mask all but highest bit of u
#define loBit(u) ((u) & 0x00000001U) // mask all but lowest bit of u
#define loBits(u) ((u) & 0x7FFFFFFFU) // mask the highest bit of u
#define mixBits(u, v) (hiBit(u)|loBits(v)) // move hi bit of u to hi bit of v
static uint32 state[N+1]; // state vector + 1 extra to not violate ANSI C
static uint32 *next; // next random value is computed from here
static int left = -1; // can *next++ this many times before reloading
void seedMT(uint32 seed)
{
//
// We initialize state[0..(N-1)] via the generator
//
// x_new = (69069 * x_old) mod 2^32
//
// from Line 15 of Table 1, p. 106, Sec. 3.3.4 of Knuth's
// _The Art of Computer Programming_, Volume 2, 3rd ed.
//
// Notes (SJC): I do not know what the initial state requirements
// of the Mersenne Twister are, but it seems this seeding generator
// could be better. It achieves the maximum period for its modulus
// (2^30) iff x_initial is odd (p. 20-21, Sec. 3.2.1.2, Knuth); if
// x_initial can be even, you have sequences like 0, 0, 0, ...;
// 2^31, 2^31, 2^31, ...; 2^30, 2^30, 2^30, ...; 2^29, 2^29 + 2^31,
// 2^29, 2^29 + 2^31, ..., etc. so I force seed to be odd below.
//
// Even if x_initial is odd, if x_initial is 1 mod 4 then
//
// the lowest bit of x is always 1,
// the next-to-lowest bit of x is always 0,
// the 2nd-from-lowest bit of x alternates ... 0 1 0 1 0 1 0 1 ... ,
// the 3rd-from-lowest bit of x 4-cycles ... 0 1 1 0 0 1 1 0 ... ,
// the 4th-from-lowest bit of x has the 8-cycle ... 0 0 0 1 1 1 1 0 ... ,
// ...
//
// and if x_initial is 3 mod 4 then
//
// the lowest bit of x is always 1,
// the next-to-lowest bit of x is always 1,
// the 2nd-from-lowest bit of x alternates ... 0 1 0 1 0 1 0 1 ... ,
// the 3rd-from-lowest bit of x 4-cycles ... 0 0 1 1 0 0 1 1 ... ,
// the 4th-from-lowest bit of x has the 8-cycle ... 0 0 1 1 1 1 0 0 ... ,
// ...
//
// The generator's potency (min. s>=0 with (69069-1)^s = 0 mod 2^32) is
// 16, which seems to be alright by p. 25, Sec. 3.2.1.3 of Knuth. It
// also does well in the dimension 2..5 spectral tests, but it could be
// better in dimension 6 (Line 15, Table 1, p. 106, Sec. 3.3.4, Knuth).
//
// Note that the random number user does not see the values generated
// here directly since reloadMT() will always munge them first, so maybe
// none of all of this matters. In fact, the seed values made here could
// even be extra-special desirable if the Mersenne Twister theory says
// so-- that's why the only change I made is to restrict to odd seeds.
//
register uint32 x = (seed | 1U) & 0xFFFFFFFFU, *s = state;
register int j;
for(left=0, *s++=x, j=N; --j;
*s++ = (x*=69069U) & 0xFFFFFFFFU);
}
uint32 reloadMT(void)
{
register uint32 *p0=state, *p2=state+2, *pM=state+M, s0, s1;
register int j;
if(left < -1)
seedMT(4357U);
left=N-1, next=state+1;
for(s0=state[0], s1=state[1], j=N-M+1; --j; s0=s1, s1=*p2++)
*p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
for(pM=state, j=M; --j; s0=s1, s1=*p2++)
*p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
s1=state[0], *p0 = *pM ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
s1 ^= (s1 >> 11);
s1 ^= (s1 << 7) & 0x9D2C5680U;
s1 ^= (s1 << 15) & 0xEFC60000U;
return(s1 ^ (s1 >> 18));
}
uint32 randomMT(void)
{
uint32 y;
if(--left < 0)
return(reloadMT());
y = *next++;
y ^= (y >> 11);
y ^= (y << 7) & 0x9D2C5680U;
y ^= (y << 15) & 0xEFC60000U;
return(y ^ (y >> 18));
}
#ifdef NOCOMPILE
int main(void)
{
int j;
// you can seed with any uint32, but the best are odds in 0..(2^32 - 1)
seedMT(4357U);
// print the first 2,002 random numbers seven to a line as an example
for(j=0; j<2002; j++)
printf(" %10lu%s", (unsigned long) randomMT(), (j%7)==6 ? "\n" : "");
return(EXIT_SUCCESS);
}
#endif

12
lab3/util.hpp Normal file
View File

@@ -0,0 +1,12 @@
struct timer{
std::chrono::high_resolution_clock::time_point t1;
std::chrono::high_resolution_clock::time_point t2;
void start(){t1 = std::chrono::high_resolution_clock::now();}
void end(){t2 = std::chrono::high_resolution_clock::now();}
double duration(){ return std::chrono::duration_cast<std::chrono::microseconds>( t2 - t1 ).count();}
};
double rand_between(double lower, double upper){
return lower + (randomMT() * 1.0 / UINT32_MAX) * (upper - lower);
}