Ahh! It works!! The camera is great now, it yaws and pitches perfectly, just need to limit it to 180 -> -180 on the pitch. There is still a problem when viewing in the negative angles, and as you move the camera closer to 0 things get weird and distorted. But the transfer over to a spherical camera point and a cartesian view plane worked fantastically
This commit is contained in:
37
src/Ray.cpp
37
src/Ray.cpp
@@ -24,7 +24,7 @@ Ray::Ray(
|
||||
sf::Color Ray::Cast() {
|
||||
|
||||
// Get the cartesian direction for computing
|
||||
sf::Vector3<float> cartesian = SphereToCart(direction);
|
||||
sf::Vector3<float> cartesian = direction;//SphereToCart(direction);
|
||||
|
||||
// Setup the voxel step based on what direction the ray is pointing
|
||||
sf::Vector3<int> voxel_step(1, 1, 1);
|
||||
@@ -47,27 +47,27 @@ sf::Color Ray::Cast() {
|
||||
fabsf((float) (1.0 / cartesian.z))
|
||||
);
|
||||
|
||||
//97, 25, 34 is an interesting example of the problems
|
||||
// Ahhh, ya know what? This is a problem with how spherical coords
|
||||
// work when approaching 0 on the chi axis as rotation about
|
||||
// the theta axis is completely useless. A viewing frustum will
|
||||
// be needed unfortunately
|
||||
|
||||
// So the way I need to do the camera is this.
|
||||
// 1.) Setup the viewplane and then store the values
|
||||
// - Camera origin
|
||||
// - Resolution of the view plane X, Y
|
||||
// - Focal length to determine FOV
|
||||
//
|
||||
// 2.) For each draw. Get a copy of the view plane
|
||||
// 3.) Rotate around the X axis first, left and right
|
||||
// 4.) Then rotate alond the Y axis, up and down.
|
||||
// 5.) Make sure to limit the camera Y Rotation to 180 and -180 degrees
|
||||
// - Rays will still go pas 180 for the amount of FOV the camera has!
|
||||
|
||||
// Intersection T is the collection of the next intersection points
|
||||
// for all 3 axis XYZ.
|
||||
|
||||
// I think this is where the hangup is currently. It's taking the delta_t which is signed
|
||||
// and multiplying it by the voxel_step which is also signed. On top of this. Computing the
|
||||
// camera position by voxel coord is debug only so I need to do the math to account for the
|
||||
// origin being anywhere inside a voxel
|
||||
intersection_t = sf::Vector3<float>(
|
||||
delta_t.x + origin.x,
|
||||
delta_t.y + origin.y,
|
||||
delta_t.z + origin.z
|
||||
);
|
||||
|
||||
if (pixel.x == 0){
|
||||
if (pixel.y == 200){
|
||||
int i = 0;
|
||||
i++;
|
||||
}
|
||||
@@ -97,7 +97,7 @@ sf::Color Ray::Cast() {
|
||||
}
|
||||
}
|
||||
|
||||
// If the voxel went out of bounds
|
||||
// If the ray went out of bounds
|
||||
if (voxel.z >= dimensions.z) {
|
||||
return sf::Color(0, 0, 255, 50);
|
||||
}
|
||||
@@ -117,9 +117,8 @@ sf::Color Ray::Cast() {
|
||||
if (voxel.z < 0) {
|
||||
return sf::Color(0, 255, 0, 50);
|
||||
}
|
||||
// If we found a voxel
|
||||
// Registers hit on non-zero
|
||||
|
||||
// If we hit a voxel
|
||||
switch (map->list[voxel.x + dimensions.x * (voxel.y + dimensions.z * voxel.z)]) {
|
||||
case 1:
|
||||
return sf::Color::Red;
|
||||
@@ -134,11 +133,7 @@ sf::Color Ray::Cast() {
|
||||
case 6:
|
||||
return sf::Color(150, 80, 220, 200);
|
||||
}
|
||||
//else if (map->list[voxel.x + dimensions.x * (voxel.y + dimensions.z * voxel.z)] != 0){
|
||||
//
|
||||
// //TODO: Switch that assigns color on voxel data
|
||||
// return sf::Color::Red;
|
||||
//}
|
||||
|
||||
dist++;
|
||||
|
||||
|
||||
|
||||
@@ -47,36 +47,56 @@ sf::Color* RayCaster::CastRays(sf::Vector3<float> camera_direction, sf::Vector3<
|
||||
// A reference to the positive X axis as our base viewport point
|
||||
sf::Vector3f base_direction(1, 0, 0);
|
||||
|
||||
int view_plane_distance = 300;
|
||||
sf::Vector3f *view_plane_vectors = new sf::Vector3f[resolution.x * resolution.y];
|
||||
|
||||
for (int y = -resolution.y / 2 ; y < resolution.y / 2; y++) {
|
||||
for (int x = -resolution.x / 2; x < resolution.x / 2; x++) {
|
||||
|
||||
view_plane_vectors[(x + resolution.x / 2) + resolution.x * (y + resolution.y / 2)] = Normalize(sf::Vector3f(view_plane_distance, x, y));
|
||||
}
|
||||
}
|
||||
|
||||
//-resolution.y / 2
|
||||
// Start the loop at the top left, scan right and work down
|
||||
for (int y = 0; y < resolution.y; y++) {
|
||||
for (int x = 0; x < resolution.x; x++) {
|
||||
|
||||
// The direction the final ray will point.
|
||||
// First take a reference to the base direction to setup the viewport
|
||||
//Vector3<float> ray_direction = new Vector3<float> (base_direction);
|
||||
|
||||
// New method to cast rays using the original intended Spherical coords
|
||||
// instead of that malarchy with converting them to cartesian from the formula
|
||||
sf::Vector3f ray = view_plane_vectors[x + resolution.x * y];
|
||||
|
||||
|
||||
sf::Vector3f ray_direction(
|
||||
camera_direction.x,
|
||||
camera_direction.y + (float)(y_increment_radians * y),
|
||||
camera_direction.z + (float)(x_increment_radians * x)
|
||||
// Then rotate y axis, up down
|
||||
ray = sf::Vector3f(
|
||||
ray.z * sin(camera_direction.y) + ray.x * cos(camera_direction.y),
|
||||
ray.y,
|
||||
ray.z * cos(camera_direction.y) - ray.x * sin(camera_direction.y)
|
||||
);
|
||||
|
||||
sf::Vector3f ray_cartesian = Normalize(SphereToCart(ray_direction));
|
||||
// // Rotate z axis, left to right.
|
||||
ray = sf::Vector3f(
|
||||
ray.x * cos(camera_direction.z) - ray.y * sin(camera_direction.z),
|
||||
ray.x * sin(camera_direction.z) + ray.y * cos(camera_direction.z),
|
||||
ray.z
|
||||
);
|
||||
|
||||
// sf::Vector3f ray_direction(
|
||||
// camera_direction.x,
|
||||
// camera_direction.y + (float)(y_increment_radians * y),
|
||||
// camera_direction.z + (float)(x_increment_radians * x)
|
||||
// );
|
||||
|
||||
sf::Vector3f ray_cartesian = Normalize(SphereToCart(ray));
|
||||
sf::Vector3f cam_cartesian = Normalize(SphereToCart(camera_direction));
|
||||
|
||||
if ((y == -99 || y == 0 || y == 99) && (/*x == 99 || x == 0 || */x == -99)) {
|
||||
std::cout << "X : " << x << "\n";
|
||||
std::cout << "Y : " << y << "\n";
|
||||
std::cout << ray_direction.x << " : " << ray_direction.y << " : " << ray_direction.z << "\n";
|
||||
std::cout << ray.x << " : " << ray.y << " : " << ray.z << "\n";
|
||||
}
|
||||
|
||||
// Setup the ray
|
||||
Ray r(map, resolution, sf::Vector2i(x, y), camera_position, ray_direction);
|
||||
Ray r(map, resolution, sf::Vector2i(x, y), camera_position, ray);
|
||||
|
||||
// Cast it
|
||||
sf::Color c = r.Cast();
|
||||
@@ -86,9 +106,10 @@ sf::Color* RayCaster::CastRays(sf::Vector3<float> camera_direction, sf::Vector3<
|
||||
}
|
||||
}
|
||||
|
||||
delete view_plane_vectors;
|
||||
|
||||
return image;
|
||||
}
|
||||
}
|
||||
|
||||
void RayCaster::moveCamera(sf::Vector2f v) {
|
||||
camera_direction.y += v.x;
|
||||
|
||||
Reference in New Issue
Block a user