Well I got something coming up, performance is worse than I was hoping, but there's a lot of optimization to go
This commit is contained in:
@@ -114,7 +114,7 @@ struct TraversalState {
|
||||
|
||||
};
|
||||
|
||||
bool get_oct_vox(
|
||||
struct TraversalState get_oct_vox(
|
||||
int3 position,
|
||||
global ulong *octree_descriptor_buffer,
|
||||
global uint *octree_attachment_lookup_buffer,
|
||||
@@ -184,7 +184,8 @@ bool get_oct_vox(
|
||||
|
||||
// If it is, then we cannot traverse further as CP's won't have been generated
|
||||
ts.found = true;
|
||||
return ts.found;
|
||||
return ts;
|
||||
//return ts.found;
|
||||
}
|
||||
|
||||
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
||||
@@ -221,12 +222,14 @@ bool get_oct_vox(
|
||||
// Currently it adds the last parent on the second to lowest
|
||||
// oct CP. Not sure if thats correct
|
||||
ts.found = 0;
|
||||
return ts.found;
|
||||
return ts;
|
||||
//return ts.found;
|
||||
}
|
||||
}
|
||||
|
||||
ts.found = 1;
|
||||
return ts.found;
|
||||
return ts;
|
||||
//return ts.found;
|
||||
}
|
||||
|
||||
// =========================================================================
|
||||
@@ -311,10 +314,220 @@ __kernel void raycaster(
|
||||
float fog_distance = 0.0f;
|
||||
|
||||
bool shadow_ray = false;
|
||||
int vox_dim = setting(OCTDIM);
|
||||
|
||||
struct TraversalState traversal_state;
|
||||
|
||||
traversal_state = get_oct_vox(
|
||||
voxel,
|
||||
octree_descriptor_buffer,
|
||||
octree_attachment_lookup_buffer,
|
||||
octree_attachment_buffer,
|
||||
settings_buffer);
|
||||
|
||||
int jump_power = (int)log2((float)vox_dim) - traversal_state.scale;
|
||||
int prev_jump_power = jump_power;
|
||||
|
||||
// TODO: DEBUG
|
||||
int failsafe = 0;
|
||||
|
||||
|
||||
// Andrew Woo's raycasting algo
|
||||
while (distance_traveled < max_distance && bounce_count < 2) {
|
||||
|
||||
|
||||
// If we hit a voxel
|
||||
if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x/2 && voxel.y < (*map_dim).x/2 && voxel.z < (*map_dim).x/2){
|
||||
//if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){
|
||||
// // traversal_state = get_oct_vox(
|
||||
// // voxel,
|
||||
// // octree_descriptor_buffer,
|
||||
// // octree_attachment_lookup_buffer,
|
||||
// // octree_attachment_buffer,
|
||||
// // settings_buffer);
|
||||
// if (traversal_state.found){
|
||||
// voxel_data = 5;
|
||||
// } else {
|
||||
// voxel_data = 0;
|
||||
// }
|
||||
//
|
||||
|
||||
// Fancy no branch version of the logic step
|
||||
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
||||
|
||||
|
||||
intersection_t +=
|
||||
delta_t * jump_power * fabs(convert_float3(face_mask.xyz));
|
||||
|
||||
|
||||
int3 other_faces = face_mask.xyz ? 0 : 1;
|
||||
intersection_t +=
|
||||
delta_t * jump_power * fabs(convert_float3(other_faces.xyz))
|
||||
- delta_t * prev_jump_power * fabs(convert_float3(other_faces.xyz));
|
||||
|
||||
|
||||
voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz;
|
||||
|
||||
// Test for out of bounds contions, add fog
|
||||
if (any(voxel >= *map_dim) || any(voxel < 0)){
|
||||
voxel.xyz -= voxel_step.xyz * face_mask.xyz;
|
||||
color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
||||
color_accumulator.w *= 4;
|
||||
break;
|
||||
}
|
||||
|
||||
uchar prev_val = traversal_state.idx_stack[traversal_state.scale];
|
||||
uchar this_face_mask = 0;
|
||||
// Check the voxel face that we traversed
|
||||
// and increment the idx in the idx stack
|
||||
if (face_mask.x) {
|
||||
this_face_mask = idx_set_x_mask;
|
||||
}
|
||||
else if (face_mask.y) {
|
||||
this_face_mask = idx_set_y_mask;
|
||||
}
|
||||
else if (face_mask.z) {
|
||||
this_face_mask = idx_set_z_mask;
|
||||
}
|
||||
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
|
||||
|
||||
// Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks
|
||||
uchar mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
|
||||
// Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0
|
||||
bool is_valid = false;
|
||||
|
||||
// TODO: Rework this logic so we don't have this bodgy if
|
||||
if (mask_index > prev_val)
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
// Check to see if the idx increased or decreased
|
||||
// If it decreased
|
||||
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
|
||||
|
||||
failsafe = 0;
|
||||
while (mask_index < prev_val || !is_valid) {
|
||||
|
||||
jump_power *= 2;
|
||||
|
||||
// Keep track of the 0th edge of our current oct
|
||||
traversal_state.oct_pos.x = floor((float)(voxel.x / 2)) * jump_power;
|
||||
traversal_state.oct_pos.y = floor((float)(voxel.y / 2)) * jump_power;
|
||||
traversal_state.oct_pos.z = floor((float)(voxel.z / 2)) * jump_power;
|
||||
|
||||
// Clear and pop the idx stack
|
||||
traversal_state.idx_stack[traversal_state.scale] = 0;
|
||||
|
||||
// Scale is now set to the oct above. Be wary of this
|
||||
traversal_state.scale--;
|
||||
|
||||
// Update the prev_val for our new idx
|
||||
prev_val = traversal_state.idx_stack[traversal_state.scale];
|
||||
|
||||
// Clear and pop the parent stack, maybe off by one error?
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0;
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position] = 0;
|
||||
traversal_state.parent_stack_position--;
|
||||
|
||||
// Set the current CD to the one on top of the stack
|
||||
traversal_state.current_descriptor =
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position];
|
||||
|
||||
// Apply the face mask to the new idx for the while check
|
||||
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
|
||||
|
||||
// Get the mask index of the new idx and check the valid status
|
||||
mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
failsafe++;
|
||||
if (failsafe > 10000)
|
||||
break;
|
||||
}
|
||||
|
||||
// At this point parent_stack[position] is at the CD of an oct with a
|
||||
// valid oct at the leaf indicated by the current idx in the idx stack scale
|
||||
|
||||
failsafe = 0;
|
||||
// While we haven't bottomed out and the oct we're looking at is valid
|
||||
while (jump_power > 1 && is_valid) {
|
||||
|
||||
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
||||
traversal_state.scale++;
|
||||
jump_power /= 2;
|
||||
|
||||
// Count the number of valid octs that come before and add it to the index to get the position
|
||||
// Negate it by one as it counts itself
|
||||
int count = popcount((uchar)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1;
|
||||
|
||||
|
||||
//TODO: REWORK THIS IF STATEMENT, PERF KILLER
|
||||
|
||||
// If this CD had the far bit set
|
||||
if (far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) {
|
||||
|
||||
// access the far point at which the head points too. Determine it's value, and add
|
||||
// the count of the valid bits in the current CD to the index
|
||||
uint far_pointer_index =
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index +
|
||||
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr
|
||||
|
||||
// Get the absolute ptr from the far ptr and add the count to get the CD that we want
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count;
|
||||
}
|
||||
// If this CD doesn't have the far bit set, access the element at which head points to
|
||||
// and then add the specified number of indices to get to the correct child descriptor
|
||||
else {
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] =
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD
|
||||
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid
|
||||
}
|
||||
|
||||
// Now that we have the index set we can increase our parent stack position to the next level and
|
||||
// retrieve the value of its CD
|
||||
traversal_state.parent_stack_position++;
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]];
|
||||
|
||||
// Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop
|
||||
// Do the logic steps to find which sub oct we step down into
|
||||
if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) {
|
||||
|
||||
// Set our voxel position to the (0,0) of the correct oct
|
||||
traversal_state.oct_pos.x += (jump_power / 2);
|
||||
|
||||
// Set the idx to represent the move
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask;
|
||||
|
||||
}
|
||||
if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) {
|
||||
|
||||
traversal_state.oct_pos.y += (jump_power / 2);
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask;
|
||||
}
|
||||
if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) {
|
||||
|
||||
traversal_state.oct_pos.z += (jump_power / 2);
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask;
|
||||
}
|
||||
|
||||
// Update the mask index with the new voxel we walked down to, and then check it's valid status
|
||||
mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
failsafe++;
|
||||
if (failsafe > 100)
|
||||
break;
|
||||
}
|
||||
|
||||
// // Test for out of bounds contions, add fog
|
||||
// if (traversal_state.scale == 1){
|
||||
// //voxel.xyz -= voxel_step.xyz * face_mask.xyz;
|
||||
// color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
||||
// color_accumulator.w *= 4;
|
||||
// break;
|
||||
// }
|
||||
voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
|
||||
} else {
|
||||
// Fancy no branch version of the logic step
|
||||
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
||||
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
|
||||
@@ -327,28 +540,10 @@ __kernel void raycaster(
|
||||
color_accumulator.w *= 4;
|
||||
break;
|
||||
}
|
||||
int vox_dim = setting(OCTDIM);
|
||||
|
||||
// If we hit a voxel
|
||||
|
||||
if (setting(OCTENABLED) == 1 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){
|
||||
if (get_oct_vox(
|
||||
voxel,
|
||||
octree_descriptor_buffer,
|
||||
octree_attachment_lookup_buffer,
|
||||
octree_attachment_buffer,
|
||||
settings_buffer
|
||||
)){
|
||||
voxel_data = 5;
|
||||
} else {
|
||||
voxel_data = 0;
|
||||
}
|
||||
} else {
|
||||
voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (voxel_data == 5 || voxel_data == 6) {
|
||||
// Determine where on the 2d plane the ray intersected
|
||||
face_position = zeroed_float3;
|
||||
|
||||
Reference in New Issue
Block a user