Software raycasting now works, but has some major problems / is extremely
slow. Perhaps it will only be useful in debugging the kernel via emulation
This commit is contained in:
@@ -170,11 +170,13 @@ void Hardware_Caster::create_viewport(int width, int height, float v_fov, float
|
||||
|
||||
void Hardware_Caster::assign_lights(std::vector<Light> lights) {
|
||||
|
||||
std::cout << sizeof(Light);
|
||||
|
||||
this->lights = std::vector<Light>(lights);
|
||||
|
||||
int light_count = lights.size();
|
||||
light_count = lights.size();
|
||||
|
||||
create_buffer("lights", sizeof(float) * 12 * light_count, lights.data(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
|
||||
create_buffer("lights", sizeof(float) * 10 * light_count, this->lights.data(), CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR);
|
||||
|
||||
create_buffer("light_count", sizeof(int), &light_count);
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ Old_Map::~Old_Map() {
|
||||
void Old_Map::generate_terrain() {
|
||||
std::mt19937 gen;
|
||||
std::uniform_real_distribution<double> dis(-1.0, 1.0);
|
||||
auto f_rand = std::bind(dis, gen);
|
||||
auto f_rand = std::bind(dis, std::ref(gen));
|
||||
|
||||
voxel_data = new char[dimensions.x * dimensions.y * dimensions.z];
|
||||
height_map = new double[dimensions.x * dimensions.y];
|
||||
@@ -34,7 +34,8 @@ void Old_Map::generate_terrain() {
|
||||
//value 2^n+1
|
||||
int DATA_SIZE = dimensions.x + 1;
|
||||
//an initial seed value for the corners of the data
|
||||
double SEED = rand() % 25 + 25;
|
||||
//srand(f_rand());
|
||||
double SEED = rand() % 25 + 55;
|
||||
|
||||
//seed the data
|
||||
set_sample(0, 0, SEED);
|
||||
|
||||
@@ -19,19 +19,19 @@ int Software_Caster::init()
|
||||
void Software_Caster::create_viewport(int width, int height, float v_fov, float h_fov)
|
||||
{
|
||||
// CL needs the screen resolution
|
||||
sf::Vector2i view_res(width, height);
|
||||
viewport_resolution = sf::Vector2i(width, height);
|
||||
|
||||
// And an array of vectors describing the way the "lens" of our
|
||||
// camera works
|
||||
// This could be modified to make some odd looking camera lenses
|
||||
|
||||
double y_increment_radians = DegreesToRadians(v_fov / view_res.y);
|
||||
double x_increment_radians = DegreesToRadians(h_fov / view_res.x);
|
||||
double y_increment_radians = DegreesToRadians(v_fov / viewport_resolution.y);
|
||||
double x_increment_radians = DegreesToRadians(h_fov / viewport_resolution.x);
|
||||
|
||||
viewport_matrix = new sf::Vector4f[width * height * 4];
|
||||
|
||||
for (int y = -view_res.y / 2; y < view_res.y / 2; y++) {
|
||||
for (int x = -view_res.x / 2; x < view_res.x / 2; x++) {
|
||||
for (int y = -viewport_resolution.y / 2; y < viewport_resolution.y / 2; y++) {
|
||||
for (int x = -viewport_resolution.x / 2; x < viewport_resolution.x / 2; x++) {
|
||||
|
||||
// The base ray direction to slew from
|
||||
sf::Vector3f ray(1, 0, 0);
|
||||
@@ -51,7 +51,7 @@ void Software_Caster::create_viewport(int width, int height, float v_fov, float
|
||||
static_cast<float>(ray.z)
|
||||
);
|
||||
|
||||
int index = (x + view_res.x / 2) + view_res.x * (y + view_res.y / 2);
|
||||
int index = (x + viewport_resolution.x / 2) + viewport_resolution.x * (y + viewport_resolution.y / 2);
|
||||
ray = Normalize(ray);
|
||||
|
||||
viewport_matrix[index] = sf::Vector4f(
|
||||
@@ -71,7 +71,7 @@ void Software_Caster::create_viewport(int width, int height, float v_fov, float
|
||||
viewport_image[i] = 255; // R
|
||||
viewport_image[i + 1] = 255; // G
|
||||
viewport_image[i + 2] = 255; // B
|
||||
viewport_image[i + 3] = 100; // A
|
||||
viewport_image[i + 3] = 255; // A
|
||||
}
|
||||
|
||||
// Interop lets us keep a reference to it as a texture
|
||||
@@ -109,7 +109,7 @@ void Software_Caster::validate() {
|
||||
}
|
||||
|
||||
void Software_Caster::compute() {
|
||||
cast_rays();
|
||||
cast_viewport();
|
||||
}
|
||||
|
||||
void Software_Caster::draw(sf::RenderWindow * window) {
|
||||
@@ -117,184 +117,224 @@ void Software_Caster::draw(sf::RenderWindow * window) {
|
||||
window->draw(viewport_sprite);
|
||||
}
|
||||
|
||||
void Software_Caster::cast_rays()
|
||||
{
|
||||
void Software_Caster::cast_viewport() {
|
||||
|
||||
int i = 0;
|
||||
for (int y = 0; y < viewport_resolution.y; y++) {
|
||||
for (int x = 0; x < viewport_resolution.x; x++) {
|
||||
std::vector<std::thread*> threads;
|
||||
for (int i = 0; i < 13; i++) {
|
||||
int s = viewport_resolution.x * ((viewport_resolution.y / 13) * i);
|
||||
int e = viewport_resolution.x * ((viewport_resolution.y / 13) * (i + 1));
|
||||
threads.push_back(new std::thread(&Software_Caster::cast_thread, this, s, e));
|
||||
}
|
||||
|
||||
int id = i;
|
||||
sf::Vector2i pixel = { id % viewport_resolution.x, id / viewport_resolution.x };
|
||||
|
||||
// 4f 3f ??
|
||||
sf::Vector4f ray_dir = viewport_matrix[pixel.x + viewport_resolution.x * pixel.y];
|
||||
|
||||
ray_dir = sf::Vector4f(
|
||||
ray_dir.z * sin(camera->get_direction().x) + ray_dir.x * cos(camera->get_direction().x),
|
||||
ray_dir.y,
|
||||
ray_dir.z * cos(camera->get_direction().x) - ray_dir.x * sin(camera->get_direction().x),
|
||||
0
|
||||
);
|
||||
|
||||
ray_dir = sf::Vector4f(
|
||||
ray_dir.x * cos(camera->get_direction().y) - ray_dir.y * sin(camera->get_direction().y),
|
||||
ray_dir.x * sin(camera->get_direction().y) + ray_dir.y * cos(camera->get_direction().y),
|
||||
ray_dir.z,
|
||||
0
|
||||
);
|
||||
|
||||
// Setup the voxel step based on what direction the ray is pointing
|
||||
sf::Vector3i voxel_step = sf::Vector3i(
|
||||
static_cast<int>(1 * (abs(ray_dir.x) / ray_dir.x)),
|
||||
static_cast<int>(1 * (abs(ray_dir.y) / ray_dir.y)),
|
||||
static_cast<int>(1 * (abs(ray_dir.z) / ray_dir.z))
|
||||
);
|
||||
|
||||
// Setup the voxel coords from the camera origin
|
||||
sf::Vector3i voxel = sf::Vector3i(
|
||||
static_cast<int>(camera->get_position().x),
|
||||
static_cast<int>(camera->get_position().y),
|
||||
static_cast<int>(camera->get_position().z)
|
||||
);
|
||||
|
||||
// Delta T is the units a ray must travel along an axis in order to
|
||||
// traverse an integer split
|
||||
sf::Vector3f delta_t = sf::Vector3f(
|
||||
fabs(1.0f / ray_dir.x),
|
||||
fabs(1.0f / ray_dir.y),
|
||||
fabs(1.0f / ray_dir.z)
|
||||
);
|
||||
|
||||
// offset is how far we are into a voxel, enables sub voxel movement
|
||||
sf::Vector3f offset = sf::Vector3f(
|
||||
(camera->get_position().x - floor(camera->get_position().x)) * voxel_step.x,
|
||||
(camera->get_position().y - floor(camera->get_position().y)) * voxel_step.y,
|
||||
(camera->get_position().z - floor(camera->get_position().z)) * voxel_step.z
|
||||
);
|
||||
|
||||
// Intersection T is the collection of the next intersection points
|
||||
// for all 3 axis XYZ.
|
||||
sf::Vector3f intersection_t = sf::Vector3f(
|
||||
delta_t.x * offset.x,
|
||||
delta_t.y * offset.y,
|
||||
delta_t.z * offset.z
|
||||
);
|
||||
|
||||
// for negative values, wrap around the delta_t, rather not do this
|
||||
// component wise, but it doesn't appear to want to work
|
||||
if (intersection_t.x < 0) {
|
||||
intersection_t.x += delta_t.x;
|
||||
}
|
||||
if (intersection_t.y < 0) {
|
||||
intersection_t.y += delta_t.y;
|
||||
}
|
||||
if (intersection_t.z < 0) {
|
||||
intersection_t.z += delta_t.z;
|
||||
}
|
||||
|
||||
// use a ghetto ass rng to give rays a "fog" appearance
|
||||
sf::Vector2i randoms = { 3, 14 };
|
||||
int seed = randoms.x + id;
|
||||
int t = seed ^ (seed << 11);
|
||||
int result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
|
||||
|
||||
int max_dist = 800 + result % 50;
|
||||
int dist = 0;
|
||||
|
||||
sf::Vector3i mask = { 0, 0, 0 };
|
||||
|
||||
// Andrew Woo's raycasting algo
|
||||
do {
|
||||
|
||||
if ((intersection_t.x) < (intersection_t.y)) {
|
||||
if ((intersection_t.x) < (intersection_t.z)) {
|
||||
|
||||
mask.x = 1;
|
||||
voxel.x += voxel_step.x;
|
||||
intersection_t.x = intersection_t.x + delta_t.x;
|
||||
}
|
||||
else {
|
||||
|
||||
mask.z = 1;
|
||||
voxel.z += voxel_step.z;
|
||||
intersection_t.z = intersection_t.z + delta_t.z;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ((intersection_t.y) < (intersection_t.z)) {
|
||||
|
||||
mask.y = 1;
|
||||
voxel.y += voxel_step.y;
|
||||
intersection_t.y = intersection_t.y + delta_t.y;
|
||||
}
|
||||
else {
|
||||
|
||||
mask.z = 1;
|
||||
voxel.z += voxel_step.z;
|
||||
intersection_t.z = intersection_t.z + delta_t.z;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// If the ray went out of bounds
|
||||
sf::Vector3i overshoot = sf::Vector3i(
|
||||
voxel.x <= map->getDimensions().x,
|
||||
voxel.y <= map->getDimensions().y,
|
||||
voxel.z <= map->getDimensions().z
|
||||
);
|
||||
|
||||
sf::Vector3i undershoot = sf::Vector3i(
|
||||
voxel.x > 0,
|
||||
voxel.y > 0,
|
||||
voxel.z > 0
|
||||
);
|
||||
|
||||
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0) {
|
||||
viewport_image[x + viewport_resolution.x * y] = (255, 0, 255, 255);
|
||||
return;
|
||||
}
|
||||
if (undershoot.z == 0) {
|
||||
viewport_image[x + viewport_resolution.x * y] = (255, 0, 255, 255);
|
||||
return;
|
||||
}
|
||||
|
||||
// If we hit a voxel
|
||||
//int index = voxel.x * (*map_dim).y * (*map_dim).z + voxel.z * (*map_dim).z + voxel.y;
|
||||
// Why the off by one on voxel.y?
|
||||
int index = voxel.x + map->getDimensions().x * (voxel.y + map->getDimensions().z * (voxel.z - 1));
|
||||
int voxel_data = map->get_voxel_data()[index];
|
||||
|
||||
if (voxel_data != 0) {
|
||||
switch (voxel_data) {
|
||||
case 255:
|
||||
viewport_image[x + viewport_resolution.x * y] = (255, 0, 255, 255);
|
||||
return;
|
||||
case 2:
|
||||
viewport_image[x + viewport_resolution.x * y] = (255, 0, 255, 255);
|
||||
return;
|
||||
case 3:
|
||||
viewport_image[x + viewport_resolution.x * y] = (255, 0, 255, 255);
|
||||
return;
|
||||
case 4:
|
||||
viewport_image[x + viewport_resolution.x * y] = (255, 0, 255, 255);
|
||||
return;
|
||||
case 5:
|
||||
viewport_image[x + viewport_resolution.x * y] = (0, 255, 255, 255);
|
||||
case 6:
|
||||
viewport_image[x + viewport_resolution.x * y] = (255, 0, 255, 255);
|
||||
return;
|
||||
default:
|
||||
//write_imagef(image, pixel, (float4)(.30, .2550, .2550, 255.00));
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
dist++;
|
||||
} while (dist < max_dist);
|
||||
|
||||
viewport_image[x + viewport_resolution.x * y] = (255, 0, 0, 255);
|
||||
return;
|
||||
}
|
||||
for (auto i : threads) {
|
||||
i->join();
|
||||
delete i;
|
||||
}
|
||||
}
|
||||
|
||||
void Software_Caster::cast_thread(int start_id, int end_id) {
|
||||
|
||||
for (int i = start_id; i < end_id; i++) {
|
||||
cast_ray(i);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Software_Caster::cast_ray(int id)
|
||||
{
|
||||
sf::Vector2i pixel = { id % viewport_resolution.x, id / viewport_resolution.x };
|
||||
|
||||
// 4f 3f ??
|
||||
sf::Vector4f ray_dir = viewport_matrix[pixel.x + viewport_resolution.x * pixel.y];
|
||||
|
||||
ray_dir = sf::Vector4f(
|
||||
ray_dir.z * sin(camera->get_direction().x) + ray_dir.x * cos(camera->get_direction().x),
|
||||
ray_dir.y,
|
||||
ray_dir.z * cos(camera->get_direction().x) - ray_dir.x * sin(camera->get_direction().x),
|
||||
0
|
||||
);
|
||||
|
||||
ray_dir = sf::Vector4f(
|
||||
ray_dir.x * cos(camera->get_direction().y) - ray_dir.y * sin(camera->get_direction().y),
|
||||
ray_dir.x * sin(camera->get_direction().y) + ray_dir.y * cos(camera->get_direction().y),
|
||||
ray_dir.z,
|
||||
0
|
||||
);
|
||||
|
||||
// Setup the voxel step based on what direction the ray is pointing
|
||||
sf::Vector3i voxel_step = sf::Vector3i(
|
||||
static_cast<int>(1 * (abs(ray_dir.x) / ray_dir.x)),
|
||||
static_cast<int>(1 * (abs(ray_dir.y) / ray_dir.y)),
|
||||
static_cast<int>(1 * (abs(ray_dir.z) / ray_dir.z))
|
||||
);
|
||||
|
||||
// Setup the voxel coords from the camera origin
|
||||
sf::Vector3i voxel = sf::Vector3i(
|
||||
static_cast<int>(camera->get_position().x),
|
||||
static_cast<int>(camera->get_position().y),
|
||||
static_cast<int>(camera->get_position().z)
|
||||
);
|
||||
|
||||
// Delta T is the units a ray must travel along an axis in order to
|
||||
// traverse an integer split
|
||||
sf::Vector3f delta_t = sf::Vector3f(
|
||||
fabs(1.0f / ray_dir.x),
|
||||
fabs(1.0f / ray_dir.y),
|
||||
fabs(1.0f / ray_dir.z)
|
||||
);
|
||||
|
||||
// offset is how far we are into a voxel, enables sub voxel movement
|
||||
sf::Vector3f offset = sf::Vector3f(
|
||||
(camera->get_position().x - floor(camera->get_position().x)) * voxel_step.x,
|
||||
(camera->get_position().y - floor(camera->get_position().y)) * voxel_step.y,
|
||||
(camera->get_position().z - floor(camera->get_position().z)) * voxel_step.z
|
||||
);
|
||||
|
||||
// Intersection T is the collection of the next intersection points
|
||||
// for all 3 axis XYZ.
|
||||
sf::Vector3f intersection_t = sf::Vector3f(
|
||||
delta_t.x * offset.x,
|
||||
delta_t.y * offset.y,
|
||||
delta_t.z * offset.z
|
||||
);
|
||||
|
||||
// for negative values, wrap around the delta_t, rather not do this
|
||||
// component wise, but it doesn't appear to want to work
|
||||
if (intersection_t.x < 0) {
|
||||
intersection_t.x += delta_t.x;
|
||||
}
|
||||
if (intersection_t.y < 0) {
|
||||
intersection_t.y += delta_t.y;
|
||||
}
|
||||
if (intersection_t.z < 0) {
|
||||
intersection_t.z += delta_t.z;
|
||||
}
|
||||
|
||||
// use a ghetto ass rng to give rays a "fog" appearance
|
||||
sf::Vector2i randoms = { 3, 14 };
|
||||
int seed = randoms.x + id;
|
||||
int t = seed ^ (seed << 11);
|
||||
int result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
|
||||
|
||||
int max_dist = 800 + result % 50;
|
||||
int dist = 0;
|
||||
|
||||
sf::Vector3i mask = { 0, 0, 0 };
|
||||
|
||||
// Andrew Woo's raycasting algo
|
||||
do {
|
||||
|
||||
if ((intersection_t.x) < (intersection_t.y)) {
|
||||
if ((intersection_t.x) < (intersection_t.z)) {
|
||||
|
||||
mask.x = 1;
|
||||
voxel.x += voxel_step.x;
|
||||
intersection_t.x = intersection_t.x + delta_t.x;
|
||||
}
|
||||
else {
|
||||
|
||||
mask.z = 1;
|
||||
voxel.z += voxel_step.z;
|
||||
intersection_t.z = intersection_t.z + delta_t.z;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ((intersection_t.y) < (intersection_t.z)) {
|
||||
|
||||
mask.y = 1;
|
||||
voxel.y += voxel_step.y;
|
||||
intersection_t.y = intersection_t.y + delta_t.y;
|
||||
}
|
||||
else {
|
||||
|
||||
mask.z = 1;
|
||||
voxel.z += voxel_step.z;
|
||||
intersection_t.z = intersection_t.z + delta_t.z;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// If the ray went out of bounds
|
||||
sf::Vector3i overshoot = sf::Vector3i(
|
||||
voxel.x <= map->getDimensions().x,
|
||||
voxel.y <= map->getDimensions().y,
|
||||
voxel.z <= map->getDimensions().z
|
||||
);
|
||||
|
||||
sf::Vector3i undershoot = sf::Vector3i(
|
||||
voxel.x > 0,
|
||||
voxel.y > 0,
|
||||
voxel.z > 0
|
||||
);
|
||||
|
||||
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0) {
|
||||
blit_pixel(sf::Color::Yellow, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
}
|
||||
if (undershoot.z == 0) {
|
||||
blit_pixel(sf::Color::Yellow, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
}
|
||||
|
||||
// If we hit a voxel
|
||||
//int index = voxel.x * (*map_dim).y * (*map_dim).z + voxel.z * (*map_dim).z + voxel.y;
|
||||
// Why the off by one on voxel.y?
|
||||
int index = voxel.x + map->getDimensions().x * (voxel.y + map->getDimensions().z * (voxel.z - 1));
|
||||
int voxel_data = map->get_voxel_data()[index];
|
||||
|
||||
if (voxel_data != 0) {
|
||||
switch (voxel_data) {
|
||||
case 1:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 2:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 3:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 4:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 5:
|
||||
blit_pixel(sf::Color(30, 10, 200, 100), sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
case 6:
|
||||
blit_pixel(sf::Color::Green, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
default:
|
||||
//write_imagef(image, pixel, (float4)(.30, .2550, .2550, 255.00));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
dist++;
|
||||
} while (dist < max_dist);
|
||||
|
||||
blit_pixel(sf::Color::Red, sf::Vector2i{ pixel.x,pixel.y }, mask);
|
||||
return;
|
||||
}
|
||||
|
||||
void Software_Caster::blit_pixel(sf::Color color, sf::Vector2i position, sf::Vector3i mask) {
|
||||
|
||||
sf::Color t = global_light(color, mask);
|
||||
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 0] = t.r;
|
||||
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 1] = t.g;
|
||||
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 2] = t.b;
|
||||
viewport_image[(position.x + viewport_resolution.x * position.y) * 4 + 3] = t.a;
|
||||
}
|
||||
|
||||
sf::Color Software_Caster::global_light(sf::Color in, sf::Vector3i mask) {
|
||||
|
||||
sf::Vector3f mask_f(mask);
|
||||
|
||||
in.a = in.a + acos(
|
||||
DotProduct(
|
||||
Normalize(lights.at(0).direction_cartesian),
|
||||
Normalize(mask_f)
|
||||
)
|
||||
)/ 2;
|
||||
|
||||
return in;
|
||||
|
||||
}
|
||||
21
src/main.cpp
21
src/main.cpp
@@ -31,6 +31,7 @@
|
||||
#include "Hardware_Caster.h"
|
||||
#include "Vector4.hpp"
|
||||
#include <Camera.h>
|
||||
#include "Software_Caster.h"
|
||||
|
||||
const int WINDOW_X = 1920;
|
||||
const int WINDOW_Y = 1080;
|
||||
@@ -67,6 +68,7 @@ int main() {
|
||||
|
||||
// Initialize the raycaster hardware, compat, or software
|
||||
RayCaster *rc = new Hardware_Caster();
|
||||
//RayCaster *rc = new Software_Caster();
|
||||
if (rc->init() != 1) {
|
||||
delete rc;
|
||||
// rc = new Hardware_Caster_Compat();
|
||||
@@ -95,8 +97,8 @@ int main() {
|
||||
rc->create_viewport(WINDOW_X, WINDOW_Y, 50.0f, 80.0f);
|
||||
|
||||
Light l;
|
||||
l.direction_cartesian = sf::Vector3f(1.0f, 1.0f, 0.0f);
|
||||
l.position = sf::Vector3f(10.0f, 10.0f, 10.0f);
|
||||
l.direction_cartesian = sf::Vector3f(1.5f, 1.2f, 0.5f);
|
||||
l.position = sf::Vector3f(100.0f, 100.0f, 100.0f);
|
||||
l.rgbi = sf::Vector4f(0.3f, 0.4f, 0.3f, 1.0f);
|
||||
|
||||
rc->assign_lights(std::vector<Light>{l});
|
||||
@@ -125,7 +127,9 @@ int main() {
|
||||
// Mouse capture
|
||||
sf::Vector2i deltas;
|
||||
sf::Vector2i fixed(window.getSize());
|
||||
sf::Vector2i prev_pos;
|
||||
bool mouse_enabled = true;
|
||||
bool reset = false;
|
||||
|
||||
while (window.isOpen()) {
|
||||
|
||||
@@ -142,6 +146,8 @@ int main() {
|
||||
mouse_enabled = false;
|
||||
else
|
||||
mouse_enabled = true;
|
||||
} if (event.key.code == sf::Keyboard::R) {
|
||||
reset = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -174,11 +180,18 @@ int main() {
|
||||
}
|
||||
|
||||
if (mouse_enabled) {
|
||||
deltas = fixed - sf::Mouse::getPosition();
|
||||
if (reset) {
|
||||
reset = false;
|
||||
sf::Mouse::setPosition(sf::Vector2i(2560/2, 1080/2));
|
||||
prev_pos = sf::Vector2i(2560 / 2, 1080 / 2);
|
||||
}
|
||||
|
||||
deltas = prev_pos - sf::Mouse::getPosition();
|
||||
if (deltas != sf::Vector2i(0, 0) && mouse_enabled == true) {
|
||||
|
||||
// Mouse movement
|
||||
sf::Mouse::setPosition(fixed);
|
||||
//sf::Mouse::setPosition(fixed);
|
||||
prev_pos = sf::Mouse::getPosition();
|
||||
camera->slew_camera(sf::Vector2f(
|
||||
deltas.y / 300.0f,
|
||||
deltas.x / 300.0f
|
||||
|
||||
Reference in New Issue
Block a user