Trying to get the position on the face where the rays intersect the voxel. Some promising first results.
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
|
||||
|
||||
// Naive incident ray light
|
||||
float4 white_light(float4 input, float3 light, int3 mask) {
|
||||
|
||||
input.w = input.w + acos(
|
||||
@@ -13,6 +13,45 @@ float4 white_light(float4 input, float3 light, int3 mask) {
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Phong + diffuse lighting function for g
|
||||
|
||||
// 0 1 2 3 4 5 6 7 8 9
|
||||
// {r, g, b, i, x, y, z, x', y', z'}
|
||||
|
||||
float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
|
||||
|
||||
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
|
||||
in_color += diffuse * 0.5;
|
||||
|
||||
if (dot(light, normalize(convert_float3(mask))) > 0.0)
|
||||
{
|
||||
float3 halfwayVector = normalize(normalize(light) + normalize(view));
|
||||
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
|
||||
in_color += pow(specTmp, 1.0f) * 0.1;
|
||||
}
|
||||
|
||||
//float3 halfwayDir = normalize(normalize(view) + normalize(light));
|
||||
//float spec = pow(max(dot(normalize(convert_float3(mask)), halfwayDir), 0.0f), 32.0f);
|
||||
in_color += 0.02;
|
||||
return in_color;
|
||||
}
|
||||
|
||||
|
||||
int rand(int* seed) // 1 <= *seed < m
|
||||
{
|
||||
int const a = 16807; //ie 7**5
|
||||
int const m = 2147483647; //ie 2**31-1
|
||||
|
||||
*seed = ((*seed) * a) % m;
|
||||
return(*seed);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// =================================== Boolean ray intersection ============================
|
||||
// =========================================================================================
|
||||
|
||||
bool cast_light_intersection_ray(
|
||||
global char* map,
|
||||
global int3* map_dim,
|
||||
@@ -30,12 +69,97 @@ bool cast_light_intersection_ray(
|
||||
// Setup the voxel coords from the camera origin
|
||||
int3 voxel = convert_int3(ray_pos);
|
||||
|
||||
// Delta T is the units a ray must travel along an axis in order to
|
||||
// traverse an integer split
|
||||
float3 delta_t = fabs(1.0f / ray_dir);
|
||||
|
||||
// offset is how far we are into a voxel, enables sub voxel movement
|
||||
float3 offset = ((ray_pos)-floor(ray_pos)) * convert_float3(voxel_step);
|
||||
|
||||
// Intersection T is the collection of the next intersection points
|
||||
// for all 3 axis XYZ.
|
||||
float3 intersection_t = delta_t *offset;
|
||||
|
||||
// for negative values, wrap around the delta_t, rather not do this
|
||||
// component wise, but it doesn't appear to want to work
|
||||
if (intersection_t.x < 0) {
|
||||
intersection_t.x += delta_t.x;
|
||||
}
|
||||
if (intersection_t.y < 0) {
|
||||
intersection_t.y += delta_t.y;
|
||||
}
|
||||
if (intersection_t.z < 0) {
|
||||
intersection_t.z += delta_t.z;
|
||||
}
|
||||
|
||||
// Hard cut-off for how far the ray can travel
|
||||
int max_dist = 800;
|
||||
int dist = 0;
|
||||
|
||||
int3 face_mask = { 0, 0, 0 };
|
||||
|
||||
// Andrew Woo's raycasting algo
|
||||
do {
|
||||
|
||||
|
||||
|
||||
// Fancy no branch version of the logic step
|
||||
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
||||
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
|
||||
voxel.xyz += voxel_step.xyz * face_mask.xyz;
|
||||
|
||||
// If the ray went out of bounds
|
||||
int3 overshoot = voxel < *map_dim;
|
||||
int3 undershoot = voxel >= 0;
|
||||
|
||||
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0) {
|
||||
return false;
|
||||
}
|
||||
if (undershoot.z == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// If we hit a voxel
|
||||
int index = voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z));
|
||||
int voxel_data = map[index];
|
||||
|
||||
if (voxel_data != 0) {
|
||||
return true;
|
||||
}
|
||||
|
||||
dist++;
|
||||
|
||||
} while (dist < 700);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// =================================== float4 of intersected voxel ============================
|
||||
// ============================================================================================
|
||||
|
||||
float4 cast_color_ray(
|
||||
global char* map,
|
||||
global int3* map_dim,
|
||||
float3 ray_dir,
|
||||
float3 ray_pos,
|
||||
global float* lights,
|
||||
global int* light_count
|
||||
|
||||
) {
|
||||
|
||||
// Setup the voxel step based on what direction the ray is pointing
|
||||
int3 voxel_step = { 1, 1, 1 };
|
||||
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
|
||||
|
||||
// Setup the voxel coords from the camera origin
|
||||
int3 voxel = convert_int3(ray_pos);
|
||||
|
||||
// Delta T is the units a ray must travel along an axis in order to
|
||||
// traverse an integer split
|
||||
float3 delta_t = fabs(1.0f / ray_dir);
|
||||
|
||||
// offset is how far we are into a voxel, enables sub voxel movement
|
||||
float3 offset = ((ray_pos) - floor(ray_pos)) * convert_float3(voxel_step);
|
||||
float3 offset = ((ray_pos)-floor(ray_pos)) * convert_float3(voxel_step);
|
||||
|
||||
// Intersection T is the collection of the next intersection points
|
||||
// for all 3 axis XYZ.
|
||||
@@ -95,105 +219,9 @@ bool cast_light_intersection_ray(
|
||||
return false;
|
||||
}
|
||||
|
||||
// 0 1 2 3 4 5 6 7 8 9
|
||||
// {r, g, b, i, x, y, z, x', y', z'}
|
||||
|
||||
float4 view_light(float4 in_color, float3 light, float3 view, int3 mask) {
|
||||
|
||||
float diffuse = max(dot(normalize(convert_float3(mask)), normalize(light)), 0.0f);
|
||||
in_color += diffuse * 0.5;
|
||||
|
||||
if (dot(light, normalize(convert_float3(mask))) > 0.0)
|
||||
{
|
||||
float3 halfwayVector = normalize(normalize(light) + normalize(view));
|
||||
float specTmp = max(dot(normalize(convert_float3(mask)), halfwayVector), 0.0f);
|
||||
in_color += pow(specTmp, 1.0f) * 0.01;
|
||||
}
|
||||
|
||||
//float3 halfwayDir = normalize(normalize(view) + normalize(light));
|
||||
//float spec = pow(max(dot(normalize(convert_float3(mask)), halfwayDir), 0.0f), 32.0f);
|
||||
in_color += 0.02;
|
||||
return in_color;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 0 1 2 3 4 5 6 7 8 9
|
||||
// {r, g, b, i, x, y, z, x', y', z'}
|
||||
|
||||
float4 cast_light_rays(
|
||||
float3 eye_direction,
|
||||
float3 ray_origin,
|
||||
float4 voxel_color,
|
||||
float3 voxel_normal,
|
||||
global float* lights,
|
||||
global int* light_count) {
|
||||
|
||||
// set the ray origin to be where the initial ray intersected the voxel
|
||||
// which side z, and the x and y position
|
||||
|
||||
float ambient_constant = 0.5;
|
||||
float intensity = 0;
|
||||
|
||||
for (int i = 0; i < *light_count; i++) {
|
||||
|
||||
float distance = sqrt(
|
||||
pow(lights[10 * i + 4] - ray_origin.x, 2) +
|
||||
pow(lights[10 * i + 5] - ray_origin.y, 2) +
|
||||
pow(lights[10 * i + 6] - ray_origin.z, 2));
|
||||
|
||||
if (distance > 50)
|
||||
continue;
|
||||
|
||||
float3 light_direction = (lights[10 * i + 7], lights[10 * i + 8], lights[10 * i + 9]);
|
||||
float c = 10.0;
|
||||
|
||||
//if (dot(light_direction, voxel_normal) > 0.0) {
|
||||
float3 halfwayVector = normalize(light_direction + eye_direction);
|
||||
float dot_prod = dot(voxel_normal, halfwayVector);
|
||||
float specTmp = max((float)dot_prod, 0.0f);
|
||||
intensity += pow(specTmp, c);
|
||||
//}
|
||||
}
|
||||
|
||||
if (get_global_id(0) == 1037760) {
|
||||
//printf("%f", intensity);
|
||||
voxel_color = (float4)(1.0, 1.0, 1.0, 1.0);
|
||||
return voxel_color;
|
||||
}
|
||||
|
||||
voxel_color.w *= intensity;
|
||||
voxel_color.w += ambient_constant;
|
||||
|
||||
return voxel_color;
|
||||
|
||||
// for every light
|
||||
//
|
||||
// check if the light is within falloff distance
|
||||
// every unit, light halfs
|
||||
//
|
||||
// if it is, cast a ray to that light and check for collisions.
|
||||
// if ray exits voxel volume, assume unobstructed
|
||||
//
|
||||
// if ray intersects a voxel, dont influence the voxel color
|
||||
//
|
||||
// if it does
|
||||
}
|
||||
|
||||
int rand(int* seed) // 1 <= *seed < m
|
||||
{
|
||||
int const a = 16807; //ie 7**5
|
||||
int const m = 2147483647; //ie 2**31-1
|
||||
|
||||
*seed = ((*seed) * a) % m;
|
||||
return(*seed);
|
||||
}
|
||||
|
||||
|
||||
// ====================================== Raycaster entry point =====================================
|
||||
// ==================================================================================================
|
||||
|
||||
__kernel void raycaster(
|
||||
global char* map,
|
||||
@@ -256,7 +284,7 @@ __kernel void raycaster(
|
||||
|
||||
// Intersection T is the collection of the next intersection points
|
||||
// for all 3 axis XYZ.
|
||||
float3 intersection_t = delta_t * offset;
|
||||
float3 intersection_t = delta_t * (offset);
|
||||
|
||||
// for negative values, wrap around the delta_t, rather not do this
|
||||
// component wise, but it doesn't appear to want to work
|
||||
@@ -324,15 +352,62 @@ __kernel void raycaster(
|
||||
// set to which face
|
||||
float3 face_position = convert_float3(face_mask * voxel_step);
|
||||
|
||||
|
||||
|
||||
if (face_mask.x * voxel_step.x == -1) {
|
||||
|
||||
float z_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.z;
|
||||
float y_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.y;
|
||||
|
||||
face_position = (float3)(1.0f, y_percent, z_percent);
|
||||
|
||||
if (face_mask.x == 1)
|
||||
face_position *= -1;
|
||||
|
||||
}
|
||||
|
||||
if (face_mask.y * voxel_step.y == -1) {
|
||||
|
||||
float x_percent = (intersection_t.y - (intersection_t.x - delta_t.x)) / delta_t.x;
|
||||
float z_percent = (intersection_t.y - (intersection_t.z - delta_t.z)) / delta_t.z;
|
||||
|
||||
face_position = (float3)(x_percent, 1.0f, z_percent);
|
||||
|
||||
if (face_mask.y == 1)
|
||||
face_position *= -1;
|
||||
}
|
||||
|
||||
if (face_mask.z * voxel_step.z == -1) {
|
||||
|
||||
float vx = intersection_t.x - delta_t.x;
|
||||
float vy = intersection_t.y - delta_t.y;
|
||||
float vz = intersection_t.z - delta_t.z;
|
||||
|
||||
float x_percent = (intersection_t.z - (intersection_t.x - delta_t.x)) / delta_t.x;
|
||||
float y_percent = (intersection_t.z - (intersection_t.y - delta_t.y)) / delta_t.y;
|
||||
|
||||
face_position = (float3)(x_percent, y_percent, 1.0f);
|
||||
|
||||
if (face_mask.z == 1)
|
||||
face_position *= -1;
|
||||
|
||||
}
|
||||
|
||||
|
||||
// set the xy for that face
|
||||
face_position += convert_float3(face_mask == (int3)(0,0,0)) * ((intersection_t) / delta_t);
|
||||
//face_position +=
|
||||
// convert_float3(face_mask == (int3)(1,1,1))
|
||||
// convert_float3(face_mask == (int3)(0,0,0)) * (intersection_t - delta_t);
|
||||
|
||||
|
||||
|
||||
//face_position += convert_float3(face_mask == (int3)(0,0,0)) * (rand(&seed) % 10) / 50.0;
|
||||
|
||||
if (cast_light_intersection_ray(
|
||||
map,
|
||||
map_dim,
|
||||
(float3)(lights[4], lights[5], lights[6]) - (convert_float3(voxel)),
|
||||
(convert_float3(voxel) - convert_float3(face_mask * voxel_step)),//face_position),//
|
||||
normalize((float3)(lights[4], lights[5], lights[6]) - (convert_float3(voxel))),
|
||||
(convert_float3(voxel) + face_position),//convert_float3(face_mask * voxel_step)),//face_position),//
|
||||
lights,
|
||||
light_count
|
||||
)) {
|
||||
|
||||
Reference in New Issue
Block a user