A decent ways towards getting the octree built. Small snag in the way fully valid or invalid non-leafs are handled
This commit is contained in:
@@ -11,12 +11,13 @@
|
|||||||
#include "util.hpp"
|
#include "util.hpp"
|
||||||
#include <deque>
|
#include <deque>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
|
#include <bitset>
|
||||||
|
|
||||||
#define _USE_MATH_DEFINES
|
#define _USE_MATH_DEFINES
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
|
|
||||||
#define CHUNK_DIM 32
|
#define CHUNK_DIM 32
|
||||||
#define OCT_DIM 64
|
#define OCT_DIM 16
|
||||||
|
|
||||||
struct KeyHasher {
|
struct KeyHasher {
|
||||||
std::size_t operator()(const sf::Vector3i& k) const {
|
std::size_t operator()(const sf::Vector3i& k) const {
|
||||||
@@ -35,17 +36,42 @@ struct Chunk {
|
|||||||
int* voxel_data;
|
int* voxel_data;
|
||||||
};
|
};
|
||||||
|
|
||||||
class Allocator {
|
class Octree {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
uint64_t dat[10000];
|
Octree() {
|
||||||
int dat_pos = 0;
|
dat = new uint64_t[(int)pow(2, 15)];
|
||||||
Allocator() {};
|
for (int i = 0; i < (int)pow(2, 15); i++) {
|
||||||
~Allocator() {};
|
dat[i] = 0;
|
||||||
void reserve(int presidence, std::vector<uint64_t> cps) {
|
|
||||||
memcpy(&dat[dat_pos], cps.data(), cps.size() * sizeof(uint64_t));
|
|
||||||
dat_pos += cps.size();
|
|
||||||
}
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
~Octree() {};
|
||||||
|
|
||||||
|
uint64_t *dat;
|
||||||
|
uint64_t stack_pos = 0x8000;
|
||||||
|
uint64_t global_pos = 0;
|
||||||
|
|
||||||
|
uint64_t copy_to_stack(std::vector<uint64_t> children) {
|
||||||
|
|
||||||
|
// Check to make sure these children will fit on the top of the stack
|
||||||
|
// if not, allocate a new block and paste them at the bottom
|
||||||
|
// Make sure to reset the position
|
||||||
|
|
||||||
|
// Copy the children on the stack, bottom up, first node to last
|
||||||
|
memcpy(&dat[stack_pos], children.data(), children.size() * sizeof(int64_t));
|
||||||
|
stack_pos -= children.size();
|
||||||
|
|
||||||
|
// Return the bitmask encoding the index of that value
|
||||||
|
// If we tripped the far bit, allocate a far index to the stack and place
|
||||||
|
// it one above preferably.
|
||||||
|
// And then shift the far bit to 1
|
||||||
|
|
||||||
|
// If not, shift the index to its correct place
|
||||||
|
return stack_pos;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -68,7 +94,7 @@ public:
|
|||||||
void moveLight(sf::Vector2f in);
|
void moveLight(sf::Vector2f in);
|
||||||
sf::Vector3f global_light;
|
sf::Vector3f global_light;
|
||||||
|
|
||||||
Allocator a;
|
Octree a;
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
|
|||||||
@@ -5,6 +5,7 @@
|
|||||||
#include <fstream>
|
#include <fstream>
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
#include "Vector4.hpp"
|
#include "Vector4.hpp"
|
||||||
|
#include <bitset>
|
||||||
|
|
||||||
const double PI = 3.141592653589793238463;
|
const double PI = 3.141592653589793238463;
|
||||||
const float PI_F = 3.14159265358979f;
|
const float PI_F = 3.14159265358979f;
|
||||||
@@ -170,3 +171,13 @@ inline std::string read_file(std::string file_name){
|
|||||||
input_file.close();
|
input_file.close();
|
||||||
return buf.str();
|
return buf.str();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline void PrettyPrintUINT64(uint64_t i) {
|
||||||
|
|
||||||
|
std::cout << "[" << std::bitset<15>(i) << "]";
|
||||||
|
std::cout << "[" << std::bitset<1>(i >> 15) << "]";
|
||||||
|
std::cout << "[" << std::bitset<8>(i >> 16) << "]";
|
||||||
|
std::cout << "[" << std::bitset<8>(i >> 24) << "]";
|
||||||
|
std::cout << "[" << std::bitset<32>(i >> 32) << "]" << std::endl;
|
||||||
|
|
||||||
|
}
|
||||||
161
src/Map.cpp
161
src/Map.cpp
@@ -8,6 +8,10 @@ Map::Map(sf::Vector3i position) {
|
|||||||
for (int i = 0; i < 1024; i++) {
|
for (int i = 0; i < 1024; i++) {
|
||||||
block[i] = 0;
|
block[i] = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < OCT_DIM * OCT_DIM * OCT_DIM; i++) {
|
||||||
|
voxel_data[i] = rand() % 2;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
int BitCount(unsigned int u) {
|
int BitCount(unsigned int u) {
|
||||||
@@ -41,111 +45,106 @@ int GetBit(int position, uint64_t* c) {
|
|||||||
return (*c >> position) & 1;
|
return (*c >> position) & 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct nonleaf {
|
bool CheckFullValid(const uint64_t c) {
|
||||||
std::vector<nonleaf> children;
|
uint64_t bitmask = 0xFF0000;
|
||||||
char leaf_mask;
|
return (c & bitmask) == bitmask;
|
||||||
char valid_mask;
|
}
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
|
bool CheckShouldInclude(const uint64_t descriptor) {
|
||||||
|
|
||||||
|
// This first one is wrong, I think it's in it's endianness
|
||||||
|
// Im currently useing bit 0 as the start to the child pointer, yes no?
|
||||||
|
|
||||||
|
// Checks if there are any non-leafs
|
||||||
|
uint64_t leaf_mask = 0xFF000000;
|
||||||
|
if ((descriptor & leaf_mask) == leaf_mask)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// Valid mask checks for contiguous values
|
||||||
|
uint64_t valid_mask = 0xFF0000;
|
||||||
|
|
||||||
|
if ((descriptor & valid_mask) == valid_mask)
|
||||||
|
return true;
|
||||||
|
else if ((descriptor & valid_mask) == ~valid_mask)
|
||||||
|
return true;
|
||||||
|
else
|
||||||
|
return false;
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
uint64_t Map::generate_children(sf::Vector3i pos, int dim) {
|
uint64_t Map::generate_children(sf::Vector3i pos, int dim) {
|
||||||
|
|
||||||
sf::Vector3i t1 = sf::Vector3i(pos.x, pos.y, pos.z);
|
|
||||||
sf::Vector3i t2 = sf::Vector3i(pos.x + dim, pos.y, pos.z);
|
|
||||||
sf::Vector3i t3 = sf::Vector3i(pos.x, pos.y + dim, pos.z);
|
|
||||||
sf::Vector3i t4 = sf::Vector3i(pos.x + dim, pos.y + dim, pos.z);
|
|
||||||
|
|
||||||
sf::Vector3i t5 = sf::Vector3i(pos.x, pos.y, pos.z + dim);
|
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
|
||||||
sf::Vector3i t6 = sf::Vector3i(pos.x + dim, pos.y, pos.z + dim);
|
// XY, Z++, XY
|
||||||
sf::Vector3i t7 = sf::Vector3i(pos.x, pos.y + dim, pos.z + dim);
|
std::vector<sf::Vector3i> v = {
|
||||||
sf::Vector3i t8 = sf::Vector3i(pos.x + dim, pos.y + dim, pos.z + dim);
|
sf::Vector3i(pos.x, pos.y, pos.z),
|
||||||
|
sf::Vector3i(pos.x + dim, pos.y, pos.z),
|
||||||
std::vector<uint64_t> cps;
|
sf::Vector3i(pos.x, pos.y + dim, pos.z),
|
||||||
uint64_t tmp = 0;
|
sf::Vector3i(pos.x + dim, pos.y + dim, pos.z),
|
||||||
|
sf::Vector3i(pos.x, pos.y, pos.z + dim),
|
||||||
int cycle_num = cycle_counter;
|
sf::Vector3i(pos.x + dim, pos.y, pos.z + dim),
|
||||||
cycle_counter++;
|
sf::Vector3i(pos.x, pos.y + dim, pos.z + dim),
|
||||||
|
sf::Vector3i(pos.x + dim, pos.y + dim, pos.z + dim)
|
||||||
|
};
|
||||||
|
|
||||||
if (dim == 1) {
|
if (dim == 1) {
|
||||||
|
|
||||||
// These don't bound check, should they?
|
// Return the base 2x2 leaf node
|
||||||
if (getVoxel(t1))
|
uint64_t tmp = 0;
|
||||||
SetBit(16, &tmp);
|
|
||||||
if (getVoxel(t2))
|
|
||||||
SetBit(17, &tmp);
|
|
||||||
if (getVoxel(t3))
|
|
||||||
SetBit(18, &tmp);
|
|
||||||
if (getVoxel(t4))
|
|
||||||
SetBit(19, &tmp);
|
|
||||||
if (getVoxel(t5))
|
|
||||||
SetBit(20, &tmp);
|
|
||||||
if (getVoxel(t6))
|
|
||||||
SetBit(21, &tmp);
|
|
||||||
if (getVoxel(t7))
|
|
||||||
SetBit(22, &tmp);
|
|
||||||
if (getVoxel(t8))
|
|
||||||
SetBit(23, &tmp);
|
|
||||||
|
|
||||||
cps.push_back(tmp);
|
// These don't bound check, should they?
|
||||||
|
// Setting the individual valid mask bits
|
||||||
|
for (int i = 0; i < v.size(); i++) {
|
||||||
|
if (getVoxel(v.at(i)))
|
||||||
|
SetBit(i + 16, &tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Set the leaf mask to full
|
||||||
|
tmp |= 0xFF000000;
|
||||||
|
|
||||||
|
// The CP will be left blank, contours will be added maybe
|
||||||
|
return tmp;
|
||||||
|
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
|
|
||||||
// Generate all 8 sub trees accounting for each of their unique positions
|
uint64_t tmp;
|
||||||
|
uint64_t child;
|
||||||
|
|
||||||
tmp = generate_children(t1, dim / 2);
|
std::vector<uint64_t> children;
|
||||||
if (tmp != 0)
|
|
||||||
cps.push_back(tmp);
|
|
||||||
|
|
||||||
tmp = generate_children(t2, dim / 2);
|
|
||||||
if (tmp != 0)
|
|
||||||
cps.push_back(tmp);
|
|
||||||
|
|
||||||
tmp = generate_children(t3, dim / 2);
|
|
||||||
if (tmp != 0)
|
|
||||||
cps.push_back(tmp);
|
|
||||||
|
|
||||||
tmp = generate_children(t4, dim / 2);
|
|
||||||
if (tmp != 0)
|
|
||||||
cps.push_back(tmp);
|
|
||||||
|
|
||||||
tmp = generate_children(t5, dim / 2);
|
|
||||||
if (tmp != 0)
|
|
||||||
cps.push_back(tmp);
|
|
||||||
|
|
||||||
tmp = generate_children(t6, dim / 2);
|
|
||||||
if (tmp != 0)
|
|
||||||
cps.push_back(tmp);
|
|
||||||
|
|
||||||
tmp = generate_children(t7, dim / 2);
|
|
||||||
if (tmp != 0)
|
|
||||||
cps.push_back(tmp);
|
|
||||||
|
|
||||||
tmp = generate_children(t8, dim / 2);
|
|
||||||
if (tmp != 0)
|
|
||||||
cps.push_back(tmp);
|
|
||||||
|
|
||||||
|
// Generate down the recursion, returning the descriptor of the current node
|
||||||
|
for (int i = 0; i < v.size(); i++) {
|
||||||
|
child = generate_children(v.at(i), dim / 2);
|
||||||
|
if (child != 0 && CheckShouldInclude(child)) {
|
||||||
|
children.push_back(child);
|
||||||
|
SetBit(i + 16, &tmp);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
a.reserve(cycle_num, cps);
|
// Now put those values onto the block stack, it returns the
|
||||||
|
// 16 bit topmost pointer to the block. The 16th bit being
|
||||||
|
// a switch to jump to a far pointer.
|
||||||
|
tmp |= a.copy_to_stack(children);
|
||||||
|
|
||||||
|
return tmp;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Map::generate_octree() {
|
void Map::generate_octree() {
|
||||||
|
|
||||||
char* arr[8192];
|
|
||||||
for (int i = 0; i < 8192; i++) {
|
|
||||||
arr[i] = 0;
|
generate_children(sf::Vector3i(0, 0, 0), OCT_DIM);
|
||||||
|
for (int i = 1000; i >= 0 ; i--) {
|
||||||
|
PrettyPrintUINT64(a.dat[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
generate_children(sf::Vector3i(0, 0, 0), 64);
|
|
||||||
|
|
||||||
int* dataset = new int[32 * 32 * 32];
|
|
||||||
for (int i = 0; i < 32 * 32 * 32; i++) {
|
|
||||||
dataset[0] = rand() % 2;
|
|
||||||
}
|
|
||||||
|
|
||||||
// levels defines how many levels to traverse before we hit raw data
|
// levels defines how many levels to traverse before we hit raw data
|
||||||
// Will be the map width I presume. Will still need to handle how to swap in and out data.
|
// Will be the map width I presume. Will still need to handle how to swap in and out data.
|
||||||
// Possible have some upper static nodes that will stay full regardless of contents?
|
// Possible have some upper static nodes that will stay full regardless of contents?
|
||||||
|
|||||||
Reference in New Issue
Block a user