Reveting to an older build. Something on the mac build stopped my card from running it.

Added camera class
Added a create_buffer method
Cleaned up much of the main function
Added Vector4 class, ported from sf::Vector3
Various other edits
This commit is contained in:
2016-09-19 02:59:33 -07:00
parent 3220a03677
commit fecf8dd8ee
4 changed files with 46 additions and 58 deletions

View File

@@ -1,15 +1,15 @@
uint4 white_light(uint4 input, float3 light, int3 mask) {
float4 white_light(float4 input, float3 light, int3 mask) {
input.w = input.w + acos(
dot(
normalize(light),
normalize(fabs(convert_float3(mask)))
)
) * 50;
) / 2;
return (input);
return input;
}
@@ -25,34 +25,30 @@ __kernel void min_kern(
__write_only image2d_t image
){
// Get the pixel position of this worker
size_t id = get_global_id(0);
int2 pixel = {id % resolution->x, id / resolution->x};
// Slew the ray into it's correct position based on the view matrix's starting position
// and the camera's current direction
float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y];
// Yaw
ray_dir = (float3)(
ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y),
ray_dir.y,
ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y)
);
// Pitch
ray_dir = (float3)(
ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z),
ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z),
ray_dir.z
ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z),
ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z),
ray_dir.z
);
// Setup the voxel step based on what direction the ray is pointing
int3 voxel_step = {1, 1, 1};
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
/*voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0);
voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0);
voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0);*/
// Setup the voxel coords from the camera origin
int3 voxel = convert_int3(*cam_pos);
@@ -64,26 +60,21 @@ __kernel void min_kern(
// for all 3 axis XYZ.
float3 intersection_t = delta_t;
// Create a psuedo random number for view fog
int2 randoms = { 3, 14 };
uint seed = randoms.x + id;
uint t = seed ^ (seed << 11);
uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8));
// Distance a ray can travel before it terminates
int max_dist = 200 + result % 50;
int max_dist = 500 + result % 50;
int dist = 0;
// Bitmask to keep track of which axis was tripped
int3 mask = { 0, 0, 0 };
// Andrew Woo's raycasting algo
do {
// Non-branching test of the lowest delta_t value
mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
// Based on the result increment the voxel and intersection
float3 thing = delta_t * fabs(convert_float3(mask.xyz));
intersection_t += delta_t * fabs(convert_float3(mask.xyz));
voxel.xyz += voxel_step.xyz * mask.xyz;
@@ -91,15 +82,12 @@ __kernel void min_kern(
int3 overshoot = voxel <= *map_dim;
int3 undershoot = voxel > 0;
// "Sky"
if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0 || undershoot.x == 0 || undershoot.y == 0){
write_imageui(image, pixel, (uint4)(135, 206, 235, 255));
write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
return;
}
// "Water"
if (undershoot.z == 0) {
write_imageui(image, pixel, (uint4)(64, 164, 223, 255));
write_imagef(image, pixel, (float4)(.14, .30, .50, 1.0));
return;
}
@@ -110,23 +98,23 @@ __kernel void min_kern(
if (voxel_data != 0) {
switch (voxel_data) {
case 1:
write_imageui(image, pixel, (uint4)(50, 0, 0, 255));
write_imagef(image, pixel, (float4)(.50, .00, .00, 1));
return;
case 2:
write_imageui(image, pixel, (uint4)(0, 50, 40, 255));
write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00));
return;
case 3:
write_imageui(image, pixel, (uint4)(0, 0, 50, 255));
write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00));
return;
case 4:
write_imageui(image, pixel, (uint4)(25, 0, 25, 255));
write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
return;
case 5:
//write_imageui(image, pixel, (uint4)(200, 200, 200, 255));
write_imageui(image, pixel, white_light((uint4)(44, 176, 55, 100), (float3)(lights[7], lights[8], lights[9]), mask));
//write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00));
write_imagef(image, pixel, white_light((float4)(.25, .32, .14, 0.2), (float3)(lights[7], lights[8], lights[9]), mask));
return;
case 6:
write_imageui(image, pixel, (uint4)(30, 80, 10, 255));
write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00));
return;
}
}
@@ -134,6 +122,6 @@ __kernel void min_kern(
dist++;
} while (dist < max_dist);
write_imageui(image, pixel, (uint4)(135, 206, 235, 255));
write_imagef(image, pixel, (float4)(.73, .81, .89, 1.0));
return;
}