really bad crashing, need to debug this on a cpu only machine
This commit is contained in:
@@ -1,3 +1,19 @@
|
||||
/*
|
||||
|
||||
Notes:
|
||||
|
||||
Keep this is mind when masking the voxel steps, pretty unintuitive behaviour
|
||||
|
||||
For scalar types, the equality operators return 0 if false and return 1 if true
|
||||
For vector types, the equality operators return 0 if false and return -1 if true (i.e. all bits set)
|
||||
The equality equal (==) returns 0 if one or both arguments are not a number (NaN).
|
||||
The equality not equal (!=) returns 1 (for scalar source operands) or -1 (for vector source
|
||||
operands) if one or both arguments are not a number (NaN).
|
||||
|
||||
if statements will take 0 as false and any other integer as true
|
||||
|
||||
|
||||
*/
|
||||
|
||||
// =========================================================================
|
||||
// ======================== INITIALIZER CONSTANTS ==========================
|
||||
@@ -128,8 +144,9 @@ struct TraversalState get_oct_vox(
|
||||
ts.current_descriptor_index = setting(OCTREE_ROOT_INDEX);
|
||||
ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index];
|
||||
ts.scale = 0;
|
||||
ts.parent_stack_position = 0;
|
||||
ts.found = false;
|
||||
ts.parent_stack[ts.scale] = ts.current_descriptor;
|
||||
ts.parent_stack[0] = ts.current_descriptor;
|
||||
|
||||
// Set our initial dimension and the position at the corner of the oct to keep track of our position
|
||||
int dimension = setting(OCTDIM);
|
||||
@@ -190,6 +207,7 @@ struct TraversalState get_oct_vox(
|
||||
|
||||
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
||||
ts.scale++;
|
||||
ts.parent_stack_position++;
|
||||
dimension /= 2;
|
||||
|
||||
// Count the number of valid octs that come before and add it to the index to get the position
|
||||
@@ -210,8 +228,8 @@ struct TraversalState get_oct_vox(
|
||||
ts.current_descriptor = octree_descriptor_buffer[ts.current_descriptor_index];
|
||||
|
||||
|
||||
ts.parent_stack[ts.scale] = ts.current_descriptor;
|
||||
|
||||
ts.parent_stack[ts.parent_stack_position] = ts.current_descriptor;
|
||||
ts.parent_stack_index[ts.parent_stack_position] = ts.current_descriptor_index;
|
||||
}
|
||||
else {
|
||||
// If the oct was not valid, then no CP's exists any further
|
||||
@@ -271,14 +289,16 @@ __kernel void raycaster(
|
||||
ray_dir.x * sin((*cam_dir).y) + ray_dir.y * cos((*cam_dir).y),
|
||||
ray_dir.z
|
||||
);
|
||||
|
||||
if (any(ray_dir == zeroed_float3))
|
||||
return;
|
||||
|
||||
// Setup the voxel step based on what direction the ray is pointing
|
||||
int3 voxel_step = {1, 1, 1};
|
||||
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
|
||||
// Correct opencl for being stupid and giving us negative for true
|
||||
int3 voxel_step = (-1, -1, -1) * ((ray_dir > 0) - (ray_dir < 0));
|
||||
|
||||
// Setup the voxel coords from the camera origin
|
||||
// rtn = round towards negative
|
||||
int3 voxel = convert_int3_rtn(*cam_pos);
|
||||
|
||||
//voxel = voxel + convert_int3(*cam_pos < 0.0f);
|
||||
@@ -287,12 +307,11 @@ __kernel void raycaster(
|
||||
float3 delta_t = fabs(1.0f / ray_dir);
|
||||
|
||||
// Intersection T is the collection of the next intersection points
|
||||
// for all 3 axis XYZ. We take the full positive cardinality when
|
||||
// for all 3 axis XYZ. We take the full negative cardinality when
|
||||
// subtracting the floor, so we must transfer the sign over from
|
||||
// the voxel step
|
||||
|
||||
float3 offset = delta_t * ((*cam_pos) - ceil(*cam_pos));
|
||||
float3 intersection_t = offset* convert_float3(voxel_step);
|
||||
float3 offset = delta_t * (floor(*cam_pos) - (*cam_pos));
|
||||
float3 intersection_t = offset * convert_float3(voxel_step);
|
||||
|
||||
// When we transfer the sign over, we get the correct direction of
|
||||
// the offset, but we merely transposed over the value instead of mirroring
|
||||
@@ -325,7 +344,7 @@ __kernel void raycaster(
|
||||
octree_attachment_buffer,
|
||||
settings_buffer);
|
||||
|
||||
int jump_power = (int)log2((float)vox_dim) - traversal_state.scale;
|
||||
int jump_power = (int)pow((float)2, log2((float)vox_dim) - (float)traversal_state.scale);
|
||||
int prev_jump_power = jump_power;
|
||||
int3 last_oct_pos = (0);
|
||||
// TODO: DEBUG
|
||||
@@ -334,209 +353,210 @@ __kernel void raycaster(
|
||||
|
||||
// Andrew Woo's raycasting algo
|
||||
while (distance_traveled < max_distance && bounce_count < 2) {
|
||||
|
||||
if (jump_power == 2){
|
||||
color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
||||
color_accumulator.w *= 4;
|
||||
break;
|
||||
}
|
||||
// If we hit a voxel
|
||||
if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x/2 && voxel.y < (*map_dim).x/2 && voxel.z < (*map_dim).x/2){
|
||||
//if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x && voxel.y < (*map_dim).x && voxel.z < (*map_dim).x){
|
||||
// // traversal_state = get_oct_vox(
|
||||
// // voxel,
|
||||
// // octree_descriptor_buffer,
|
||||
// // octree_attachment_lookup_buffer,
|
||||
// // octree_attachment_buffer,
|
||||
// // settings_buffer);
|
||||
// if (traversal_state.found){
|
||||
// voxel_data = 5;
|
||||
// } else {
|
||||
// voxel_data = 0;
|
||||
// }
|
||||
//
|
||||
if (setting(OCTENABLED) == 0 && voxel.x < (*map_dim).x/2 && voxel.y < (*map_dim).x/2 && voxel.z < (*map_dim).x) {
|
||||
|
||||
// Fancy no branch version of the logic step
|
||||
face_mask = 1 + (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
|
||||
traversal_state = get_oct_vox(
|
||||
voxel,
|
||||
octree_descriptor_buffer,
|
||||
octree_attachment_lookup_buffer,
|
||||
octree_attachment_buffer,
|
||||
settings_buffer);
|
||||
|
||||
prev_jump_power = jump_power;
|
||||
// True will result in a -1, e.g (0, 0, -1) so negate it to positive
|
||||
face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
|
||||
|
||||
voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz;
|
||||
prev_jump_power = jump_power;
|
||||
|
||||
// Test for out of bounds contions, add fog
|
||||
if (any(voxel >= *map_dim) || any(voxel < 0)){
|
||||
voxel.xyz -= voxel_step.xyz * face_mask.xyz;
|
||||
color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
||||
color_accumulator.w *= 4;
|
||||
break;
|
||||
}
|
||||
voxel.xyz += voxel_step.xyz * jump_power * face_mask.xyz;
|
||||
|
||||
// Test for out of bounds contions, add fog
|
||||
if (any(voxel >= *map_dim) || any(voxel < 0)){
|
||||
voxel.xyz -= voxel_step.xyz * jump_power * face_mask.xyz;
|
||||
color_accumulator = mix(fog_color, voxel_color, 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
||||
color_accumulator.w *= 4;
|
||||
break;
|
||||
}
|
||||
|
||||
uchar prev_val = traversal_state.idx_stack[traversal_state.scale];
|
||||
uchar this_face_mask = 0;
|
||||
|
||||
uchar prev_val = traversal_state.idx_stack[traversal_state.scale];
|
||||
uchar this_face_mask = 0;
|
||||
// Check the voxel face that we traversed
|
||||
// and increment the idx in the idx stack
|
||||
if (face_mask.x) {
|
||||
this_face_mask = idx_set_x_mask;
|
||||
}
|
||||
else if (face_mask.y) {
|
||||
this_face_mask = idx_set_y_mask;
|
||||
}
|
||||
else if (face_mask.z) {
|
||||
this_face_mask = idx_set_z_mask;
|
||||
}
|
||||
// Check the voxel face that we traversed
|
||||
if (face_mask.x) {
|
||||
this_face_mask = idx_set_x_mask;
|
||||
}
|
||||
else if (face_mask.y) {
|
||||
this_face_mask = idx_set_y_mask;
|
||||
}
|
||||
else if (face_mask.z) {
|
||||
this_face_mask = idx_set_z_mask;
|
||||
}
|
||||
|
||||
// and increment the idx in the idx stack
|
||||
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
|
||||
|
||||
// Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks
|
||||
uchar mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
|
||||
// Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0
|
||||
bool is_valid = false;
|
||||
|
||||
// Check to see if the idx increased or decreased
|
||||
// If it decreased, thus invalid
|
||||
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
|
||||
failsafe = 0;
|
||||
if (mask_index > prev_val) // TODO: Rework this logic so we don't have this bodgy if
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
while (mask_index < prev_val || !is_valid) {
|
||||
|
||||
jump_power *= 2;
|
||||
|
||||
// Keep track of the 0th edge of our current oct
|
||||
traversal_state.oct_pos.x = floor((float)(voxel.x / 2)) * jump_power;
|
||||
traversal_state.oct_pos.y = floor((float)(voxel.y / 2)) * jump_power;
|
||||
traversal_state.oct_pos.z = floor((float)(voxel.z / 2)) * jump_power;
|
||||
|
||||
// Clear and pop the idx stack
|
||||
traversal_state.idx_stack[traversal_state.scale] = 0;
|
||||
|
||||
// Scale is now set to the oct above. Be wary of this
|
||||
traversal_state.scale--;
|
||||
|
||||
// Update the prev_val for our new idx
|
||||
prev_val = traversal_state.idx_stack[traversal_state.scale];
|
||||
|
||||
// Clear and pop the parent stack, maybe off by one error?
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0;
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position] = 0;
|
||||
traversal_state.parent_stack_position--;
|
||||
|
||||
// Set the current CD to the one on top of the stack
|
||||
traversal_state.current_descriptor =
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position];
|
||||
|
||||
// Apply the face mask to the new idx for the while check
|
||||
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
|
||||
|
||||
// Mask index is the 1D index'd value of the idx for interaction with the valid / leaf masks
|
||||
uchar mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
// Get the mask index of the new idx and check the valid status
|
||||
mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
// Whether or not the next oct we want to enter in the current CD's valid mask is 1 or 0
|
||||
bool is_valid = false;
|
||||
|
||||
// TODO: Rework this logic so we don't have this bodgy if
|
||||
if (mask_index > prev_val)
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
// Check to see if the idx increased or decreased
|
||||
// If it decreased
|
||||
// Pop up the stack until the oct that the idx flip is valid and we landed on a valid oct
|
||||
|
||||
failsafe = 0;
|
||||
while (mask_index < prev_val || !is_valid) {
|
||||
|
||||
jump_power *= 2;
|
||||
|
||||
// Keep track of the 0th edge of our current oct
|
||||
traversal_state.oct_pos.x = floor((float)(voxel.x / 2)) * jump_power;
|
||||
traversal_state.oct_pos.y = floor((float)(voxel.y / 2)) * jump_power;
|
||||
traversal_state.oct_pos.z = floor((float)(voxel.z / 2)) * jump_power;
|
||||
|
||||
// Clear and pop the idx stack
|
||||
traversal_state.idx_stack[traversal_state.scale] = 0;
|
||||
|
||||
// Scale is now set to the oct above. Be wary of this
|
||||
traversal_state.scale--;
|
||||
|
||||
// Update the prev_val for our new idx
|
||||
prev_val = traversal_state.idx_stack[traversal_state.scale];
|
||||
|
||||
// Clear and pop the parent stack, maybe off by one error?
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] = 0;
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position] = 0;
|
||||
traversal_state.parent_stack_position--;
|
||||
|
||||
// Set the current CD to the one on top of the stack
|
||||
traversal_state.current_descriptor =
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position];
|
||||
|
||||
// Apply the face mask to the new idx for the while check
|
||||
traversal_state.idx_stack[traversal_state.scale] ^= this_face_mask;
|
||||
|
||||
// Get the mask index of the new idx and check the valid status
|
||||
mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
failsafe++;
|
||||
if (failsafe > 20)
|
||||
break;
|
||||
}
|
||||
|
||||
// At this point parent_stack[position] is at the CD of an oct with a
|
||||
// valid oct at the leaf indicated by the current idx in the idx stack scale
|
||||
|
||||
failsafe = 0;
|
||||
// While we haven't bottomed out and the oct we're looking at is valid
|
||||
while (jump_power > 1 && is_valid) {
|
||||
|
||||
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
||||
traversal_state.scale++;
|
||||
jump_power /= 2;
|
||||
|
||||
// Count the number of valid octs that come before and add it to the index to get the position
|
||||
// Negate it by one as it counts itself
|
||||
int count = popcount((uchar)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1;
|
||||
|
||||
|
||||
//TODO: REWORK THIS IF STATEMENT, PERF KILLER
|
||||
|
||||
// If this CD had the far bit set
|
||||
if (far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) {
|
||||
|
||||
// access the far point at which the head points too. Determine it's value, and add
|
||||
// the count of the valid bits in the current CD to the index
|
||||
uint far_pointer_index =
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index +
|
||||
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr
|
||||
|
||||
// Get the absolute ptr from the far ptr and add the count to get the CD that we want
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count;
|
||||
}
|
||||
// If this CD doesn't have the far bit set, access the element at which head points to
|
||||
// and then add the specified number of indices to get to the correct child descriptor
|
||||
else {
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] =
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD
|
||||
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid
|
||||
}
|
||||
|
||||
// Now that we have the index set we can increase our parent stack position to the next level and
|
||||
// retrieve the value of its CD
|
||||
traversal_state.parent_stack_position++;
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]];
|
||||
|
||||
// Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop
|
||||
// Do the logic steps to find which sub oct we step down into
|
||||
if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) {
|
||||
|
||||
// Set our voxel position to the (0,0) of the correct oct
|
||||
traversal_state.oct_pos.x += (jump_power / 2);
|
||||
|
||||
// Set the idx to represent the move
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask;
|
||||
|
||||
}
|
||||
if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) {
|
||||
|
||||
traversal_state.oct_pos.y += (jump_power / 2);
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask;
|
||||
}
|
||||
if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) {
|
||||
|
||||
traversal_state.oct_pos.z += (jump_power / 2);
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask;
|
||||
}
|
||||
|
||||
// Update the mask index with the new voxel we walked down to, and then check it's valid status
|
||||
mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
failsafe++;
|
||||
if (failsafe > 20)
|
||||
break;
|
||||
}
|
||||
|
||||
// intersection_t += delta_t * jump_power * fabs(convert_float3(face_mask.xyz));
|
||||
//
|
||||
// //int3 other_faces = face_mask == 1 ? 1 : -1;
|
||||
// int3 other_faces = select((int3)(1,1,1), (int3)(0,0,0), (int3)(face_mask == 1));
|
||||
// //int3 added_diff = last_oct_pos + prev_jump_power - traversal_state.oct_pos;
|
||||
//
|
||||
// uint3 multiplier = (1, 1, 1);//convert_uint3(abs(traversal_state.oct_pos - last_oct_pos) * (1.0f/prev_jump_power));
|
||||
//
|
||||
// last_oct_pos = traversal_state.oct_pos;
|
||||
//
|
||||
// intersection_t -= delta_t * prev_jump_power * convert_float3(other_faces.xyz);
|
||||
// intersection_t += delta_t * convert_float3(multiplier) * jump_power * fabs(convert_float3(other_faces.xyz));
|
||||
|
||||
|
||||
|
||||
if (traversal_state.scale == 1 && is_valid){
|
||||
//voxel.xyz -= voxel_step.xyz * face_mask.xyz;
|
||||
color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
||||
color_accumulator.w *= 4;
|
||||
failsafe++;
|
||||
if (failsafe > 50)
|
||||
break;
|
||||
}
|
||||
|
||||
// At this point parent_stack[position] is at the CD of an oct with a
|
||||
// valid oct at the leaf indicated by the current idx in the idx stack scale
|
||||
|
||||
failsafe = 0;
|
||||
// While we haven't bottomed out and the oct we're looking at is valid
|
||||
while (jump_power > 1 && is_valid) {
|
||||
|
||||
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
|
||||
traversal_state.scale++;
|
||||
jump_power /= 2;
|
||||
|
||||
// Count the number of valid octs that come before and add it to the index to get the position
|
||||
// Negate it by one as it counts itself
|
||||
int count = popcount((uchar)(traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & count_mask_8[mask_index]) - 1;
|
||||
|
||||
|
||||
//TODO: REWORK THIS IF STATEMENT, PERF KILLER
|
||||
|
||||
// If this CD had the far bit set
|
||||
if (far_bit_mask & octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]]) {
|
||||
|
||||
// access the far point at which the head points too. Determine it's value, and add
|
||||
// the count of the valid bits in the current CD to the index
|
||||
uint far_pointer_index =
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // current index +
|
||||
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask); // the relative prt to the far ptr
|
||||
|
||||
// Get the absolute ptr from the far ptr and add the count to get the CD that we want
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] = octree_descriptor_buffer[far_pointer_index] + count;
|
||||
}
|
||||
//voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
|
||||
} else {
|
||||
// Fancy no branch version of the logic step
|
||||
face_mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy);
|
||||
intersection_t += delta_t * fabs(convert_float3(face_mask.xyz));
|
||||
// If this CD doesn't have the far bit set, access the element at which head points to
|
||||
// and then add the specified number of indices to get to the correct child descriptor
|
||||
else {
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position + 1] =
|
||||
traversal_state.parent_stack_index[traversal_state.parent_stack_position] + // The current index to this CD
|
||||
(traversal_state.parent_stack[traversal_state.parent_stack_position] & child_pointer_mask) + count; // The relative dist + the number of bits that were valid
|
||||
}
|
||||
|
||||
// Now that we have the index set we can increase our parent stack position to the next level and
|
||||
// retrieve the value of its CD
|
||||
traversal_state.parent_stack_position++;
|
||||
traversal_state.parent_stack[traversal_state.parent_stack_position] = octree_descriptor_buffer[traversal_state.parent_stack_index[traversal_state.parent_stack_position]];
|
||||
|
||||
// Unlike the single shot DFS, it makes a bit more sense to have this at the tail of the while loop
|
||||
// Do the logic steps to find which sub oct we step down into
|
||||
if (voxel.x >= (jump_power / 2) + traversal_state.oct_pos.x) {
|
||||
|
||||
// Set our voxel position to the (0,0) of the correct oct
|
||||
traversal_state.oct_pos.x += (jump_power / 2);
|
||||
|
||||
// Set the idx to represent the move
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_x_mask;
|
||||
|
||||
}
|
||||
if (voxel.y >= (jump_power / 2) + traversal_state.oct_pos.y) {
|
||||
|
||||
traversal_state.oct_pos.y += (jump_power / 2);
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_y_mask;
|
||||
}
|
||||
if (voxel.z >= (jump_power / 2) + traversal_state.oct_pos.z) {
|
||||
|
||||
traversal_state.oct_pos.z += (jump_power / 2);
|
||||
traversal_state.idx_stack[traversal_state.scale] |= idx_set_z_mask;
|
||||
}
|
||||
|
||||
// Update the mask index with the new voxel we walked down to, and then check it's valid status
|
||||
mask_index = traversal_state.idx_stack[traversal_state.scale];
|
||||
is_valid = (traversal_state.parent_stack[traversal_state.parent_stack_position] >> 16) & mask_8[mask_index];
|
||||
|
||||
failsafe++;
|
||||
if (failsafe > 50)
|
||||
break;
|
||||
}
|
||||
|
||||
// Add the delta for the jump power and the traversed face
|
||||
intersection_t += delta_t * jump_power * fabs(convert_float3(face_mask.xyz));
|
||||
|
||||
|
||||
// Get the other faces
|
||||
int3 other_faces = select((int3)(1,1,1), (int3)(0,0,0), (int3)(face_mask == 1));
|
||||
|
||||
// Get the amount of times we need to multiply the delta t to get to our face
|
||||
uint3 multiplier = convert_uint3(abs(traversal_state.oct_pos - last_oct_pos) * (1.0f/prev_jump_power));
|
||||
|
||||
last_oct_pos = traversal_state.oct_pos;
|
||||
|
||||
// Go back to the beginning intersection t's for the non traversed faces
|
||||
intersection_t -= delta_t * prev_jump_power * convert_float3(other_faces.xyz);
|
||||
|
||||
// add back the intersection for our current jump power
|
||||
intersection_t += delta_t * convert_float3(multiplier) * jump_power * fabs(convert_float3(other_faces.xyz));
|
||||
|
||||
if (traversal_state.scale == 1 && is_valid){
|
||||
voxel_data = 5;
|
||||
//voxel.xyz -= voxel_step.xyz * face_mask.xyz;
|
||||
color_accumulator = mix((1.0f, 1.0f, 1.0f, 1.0f), (1.0f, 1.0f, 1.0f, 1.0f), 1.0f - max(distance_traveled / 700.0f, 0.0f));
|
||||
color_accumulator.w *= 4;
|
||||
break;
|
||||
}
|
||||
//voxel_data = map[voxel.x + (*map_dim).x * (voxel.y + (*map_dim).z * (voxel.z))];
|
||||
} else {
|
||||
|
||||
// True will result in a -1, e.g (0, 0, -1) so negate it to positive
|
||||
face_mask = -1 * (intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy));
|
||||
intersection_t += delta_t * convert_float3(face_mask.xyz);
|
||||
voxel.xyz += voxel_step.xyz * face_mask.xyz;
|
||||
|
||||
// Test for out of bounds contions, add fog
|
||||
@@ -551,14 +571,17 @@ __kernel void raycaster(
|
||||
|
||||
|
||||
if (voxel_data == 5 || voxel_data == 6) {
|
||||
|
||||
// Determine where on the 2d plane the ray intersected
|
||||
face_position = zeroed_float3;
|
||||
tile_face_position = zeroed_float2;
|
||||
|
||||
// Collect the sign of the face hit for ray redirection
|
||||
sign = (1.0f, 1.0f, 1.0f);
|
||||
|
||||
// First determine the percent of the way the ray is towards the next intersection_t
|
||||
// in relation to the xyz position on the plane
|
||||
if (face_mask.x == -1) {
|
||||
if (face_mask.x == 1) {
|
||||
|
||||
sign.x *= -1.0;
|
||||
|
||||
@@ -573,7 +596,7 @@ __kernel void raycaster(
|
||||
face_position = (float3)(1.00001f, y_percent, z_percent);
|
||||
tile_face_position = face_position.yz;
|
||||
}
|
||||
else if (face_mask.y == -1) {
|
||||
else if (face_mask.y == 1) {
|
||||
|
||||
sign.y *= -1.0;
|
||||
float x_percent = (intersection_t.x - (intersection_t.y - delta_t.y)) / delta_t.x;
|
||||
@@ -582,7 +605,7 @@ __kernel void raycaster(
|
||||
tile_face_position = face_position.xz;
|
||||
}
|
||||
|
||||
else if (face_mask.z == -1) {
|
||||
else if (face_mask.z == 1) {
|
||||
|
||||
sign.z *= -1.0;
|
||||
float x_percent = (intersection_t.x - (intersection_t.z - delta_t.z)) / delta_t.x;
|
||||
@@ -608,14 +631,14 @@ __kernel void raycaster(
|
||||
|
||||
// We run into the Hairy ball problem, so we need to define
|
||||
// a special case for the zmask
|
||||
if (face_mask.z == -1) {
|
||||
if (face_mask.z == 1) {
|
||||
tile_face_position.x = 1.0f - tile_face_position.x;
|
||||
tile_face_position.y = 1.0f - tile_face_position.y;
|
||||
}
|
||||
}
|
||||
|
||||
face_position.z = select((face_position.z), (-face_position.z + 1.0f), (int)(ray_dir.z > 0));
|
||||
tile_face_position.y = select((tile_face_position.y), (-tile_face_position.y + 1.0f), (int)(ray_dir.z < 0));
|
||||
face_position.z = select((face_position.z), (-face_position.z + 1.0f), -1 * (int)(ray_dir.z > 0));
|
||||
tile_face_position.y = select((tile_face_position.y), (-tile_face_position.y + 1.0f), -1 * (int)(ray_dir.z < 0));
|
||||
|
||||
// Now we detect what type of of voxel we intersected and decide whether
|
||||
// to bend the ray, send out a light intersection ray, or add texture color
|
||||
@@ -647,10 +670,10 @@ __kernel void raycaster(
|
||||
return;
|
||||
|
||||
voxel -= voxel_step * face_mask;
|
||||
voxel_step = ( 1, 1, 1 ) * ((ray_dir > 0) - (ray_dir < 0));
|
||||
voxel_step = ( -1, -1, -1 ) * ((ray_dir > 0) - (ray_dir < 0));
|
||||
|
||||
delta_t = fabs(1.0f / ray_dir);
|
||||
intersection_t = delta_t * ((hit_pos)-floor(hit_pos)) * convert_float3(voxel_step);
|
||||
intersection_t = delta_t * ((hit_pos) - floor(hit_pos)) * convert_float3(voxel_step);
|
||||
intersection_t += delta_t * -convert_float3(isless(intersection_t, 0));
|
||||
|
||||
// REFLECTION
|
||||
@@ -670,8 +693,7 @@ __kernel void raycaster(
|
||||
return;
|
||||
|
||||
voxel -= voxel_step * face_mask;
|
||||
voxel_step = ( 1, 1, 1 );
|
||||
voxel_step *= (ray_dir > 0) - (ray_dir < 0);
|
||||
voxel_step = ( -1, -1, -1 ) * (ray_dir > 0) - (ray_dir < 0);
|
||||
|
||||
delta_t = fabs(1.0f / ray_dir);
|
||||
intersection_t = delta_t * ((hit_pos)-floor(hit_pos)) * convert_float3(voxel_step);
|
||||
|
||||
@@ -51,8 +51,8 @@ bool Application::init_clcaster() {
|
||||
raycaster->assign_map(map);
|
||||
|
||||
camera = std::make_shared<Camera>(
|
||||
sf::Vector3f(30.5f, 30.5f, 30.5f), // Starting position
|
||||
sf::Vector2f(1.57f, 0.0f), // Direction
|
||||
sf::Vector3f(30.5f, 30.5f, 10.5f), // Starting position
|
||||
sf::Vector2f(1.50f, -2.0f), // Direction
|
||||
window.get()
|
||||
);
|
||||
raycaster->assign_camera(camera);
|
||||
|
||||
Reference in New Issue
Block a user